青青草原av-午夜视频免费看-免费久久久-中国av片-欧美一级欧美三级在线观看-火影忍者羞羞漫画-成av人片在线观看www-国产日本亚洲-欧美视频在线免费-日本韩国在线-在线日韩中文字幕-国产成人三级在线播放-久久福利在线-老司机免费精品视频-男人操女人逼逼视频-av大片免费-欧美精品第二页-操校花视频-欧美插插视频-优优色综合

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

黄页免费视频 | 国产精品不卡视频 | 奇米成人 | 国产性猛交96 | 欧美日韩免费观看视频 | 亚洲a级在线观看 | www奇米影视com | 日本高清免费视频 | 岳狂躁岳丰满少妇大叫 | 波多野结衣人妻 | 特黄视频在线观看 | 五月伊人婷婷 | 福利视频亚洲 | youjizz欧美 | 欧美日韩精品一区二区 | 天堂精品一区二区三区 | a免费在线 | 又黄又爽的视频 | 91黑丝在线观看 | 天堂在线中文8 | 91久久国产综合久久91 | 欧美性在线视频 | 黄色av在| 亚洲一区二区三区午夜 | 伦理片av | 成人久色 | 国产av第一区 | 国产精品色呦呦 | 91视频国产一区 | av小说免费在线观看 | 青青草97国产精品免费观看 | 国产成人免费在线观看 | 日韩欧美亚洲在线 | 中文字幕一区二区三区精品 | av污在线观看 | 深夜视频一区二区三区 | 少妇高潮久久久久久潘金莲 | 美女被啪羞羞粉色视频 | 51吃瓜网今日 | 十八岁世界在线观看高清免费韩剧 | 亚洲欧美a | 久操免费在线 | 日本久久99 | 4色av| 国产精品99久 | 好吊色欧美一区二区三区视频 | 欧美福利网站 | 欧美8888 | 男人狂揉女人下部视频 | 国产在线视频网站 | 亚洲hhh| 综合免费视频 | 91淫黄大片| 日少妇的逼 | 久久久久久久国产精品美女 | 大奶在线播放 | 91精品视频在线看 | 日韩女优在线观看 | 国产精品久久久久一区二区三区 | 91九色国产ts另类人妖 | 四虎国产成人永久精品免费 | 中文在线日韩 | 欧美日韩视频在线观看免费 | 91在线播放视频 | 亚洲影院一区二区三区 | 亚洲啊v在线 | 污在线观看 | 午夜伦伦电影理论片费看 | 国产精品一级二级 | 精品白浆| 五月激情片 | 麻豆影视免费观看 | 亚洲国产一区二区三区 | 色欲av永久无码精品无码蜜桃 | 国产日韩精品一区二区三区在线 | 相亲对象是问题学生动漫免费观看 | 久草手机在线 | 日本爽妇网 | 蜜臀一区二区三区 | 精品日韩中文字幕 | 成人免费av在线 | 亚洲精选一区二区 | 中国字幕一色哟哟 | av播放在线 | 国产a级黄色 | 日本在线视频www色 成人激情视频在线播放 | 香蕉啪啪网 | 亚洲一级片av | 亚洲欧美黄色片 | 白丝久久 | 教练含着她的乳奶揉搓揉捏动态图 | 欧洲女性下面有没有毛发 | 超碰国产在线观看 | 成人欧美一区二区三区小说 | 亚洲国产美女视频 | 亚洲v天堂 | 中文字幕欧美亚洲 | 国产精品区一区二区三 | 久久久久久99 | 精品国产精品国产偷麻豆 | 强行无套内谢大学生初次 | 国产精品一区二区入口九绯色 | 老司机免费视频 | 翔田千里在线播放 | 国产在线观看一区 | 高中男男gay互囗交观看 | 毛片高清 | 在线只有精品 | 免费网站看av | 久久av高潮av无码av喷吹 | 中文字幕人妻伦伦 | 九九热在线免费视频 | 国产日产欧美一区二区 | 活大器粗np高h一女多夫 | 爱爱福利社 | 日韩精品欧美在线 | 91精品国产福利在线观看 | 亚洲最大福利 | 亚洲aⅴ在线 | 黑人操亚洲人 | 成年人性生活视频 | 亚洲免费网址 | 中文字幕一区二区三区免费视频 | 午夜秋霞网 | 欧美日韩中文字幕一区 | 玩日本老头很兴奋xxxx | 蜜桃视频在线入口www | www.黄色大片 | 91精品一区二区三区在线观看 | 男女性高潮免费网站 | 国产黑丝在线视频 | 香蕉黄视频| 中文字幕性 | 无码少妇精品一区二区免费动态 | 欧美激情在线看 | 果冻传媒18禁免费视频 | 中文字幕av一区二区三区人妻少妇 | 日本少妇喷水 | 国产在线欧美在线 | 日本人做爰全过程 | 免费国产羞羞网站视频 | 动漫毛片 | 日韩电影中文字幕在线观看 | 超碰97国产在线 | 美妇湿透娇羞紧窄迎合 | www.黄在线观看 | 成人三级在线视频 | www伊人网 | 亚洲国产果冻传媒av在线观看 | 91精品亚洲一区 | 波多野结衣在线电影 | 少女忠诚电影高清免费 | 国产香蕉视频在线 | av剧情在线 | 麻豆视频网站在线观看 | 国产精品国产三级国产aⅴ 男人天堂最新网址 | 亚洲人成人无码网www国产 | 先锋影音av资源在线 | 国产性生活一级片 | 无码av免费精品一区二区三区 | 国产影视一区 | 国产麻豆成人 | 日韩成人不卡 | 亚洲欧美日韩国产一区二区三区 | 特级西西444www高清大胆 | 日本精品一区二区三区在线观看 | 国产精品无码一区二区三区免费 | 天天5g天天爽免费观看 | 99久久人妻无码精品系列 | h视频亚洲| 先锋影音av资源在线观看 | www久久久久 | 欧美日韩一区二区三区国产精品成人 | 国产在线欧美在线 | 日韩精品在线观看AV | 免费无遮挡无码永久视频 | av免费网址在线观看 | 国内精品在线观看视频 | 久久精品日韩 | 最全aⅴ番号库网 | 国产免费久久久 | 亚洲区自拍偷拍 | 日韩在线中文字幕 | 国产精品欧美一区喷水 | 夜夜干天天操 | 久草一区 | 狠狠躁18三区二区一区视频 | 欧美第一页 | 亚洲精品污一区二区三区 | 欧美怡红院视频一区二区三区 | 激情九月天 | 免费一级suv好看的国产网站 | av在线一区二区三区 | 精品视频无码一区二区三区 | www久久精品 | 国产麻豆精品一区二区 | 18在线观看免费入口 | 91亚洲精品视频 | 九九久久网| 色哟哟精品观看 | 自拍第1页 | 黄色免费看片 | 精品国偷自产国产一区 | 一级爱爱免费视频 | 精品一区二区三区欧美 | 免费黄色看片网站 | 国产又粗又长 | 国产精品99久久久久久大便 | 久久尹人| 成人激情开心 | 久久全国免费视频 | 无码精品一区二区三区AV | 高清日韩欧美 | 久久国产中文字幕 | 国产无遮挡又黄又爽在线观看 | 久久高清免费视频 | 欧美最猛黑人xxxx黑人猛交 | 国产欧美日韩免费 | 免费精品视频一区二区三区 | 男受被做哭激烈娇喘gv视频 | 日皮视频免费观看 | 综合图区亚洲 | 中文字幕在线精品 | 中文日韩在线观看 | 欧洲国产精品 | 少妇太爽了太深了太硬了 | 91丝袜呻吟高潮美腿白嫩 | 国产成人精品视频ⅴa片软件竹菊 | 亚洲一区二区免费看 | 国产95在线 | 亚洲AV无码精品久久一区二区 | 视频二区在线观看 | 欧美日韩在线观看一区 | 一级日批片| 91免费福利 | 91大神精品在线| 色女人综合| 国产成人无码一区二区在线观看 | 奇米影视网| 国产无限制自拍 | 久久九九精品视频 | 国产成人精品无码免费看夜聊软件 | 欧美另类极品videosbest最新版本 | 操你妹影院 | 美女视频一区二区 | 91蝌蚪在线 | 色哟哟网站在线观看 | 肉肉av福利一精品导航 | www,xxx69 japan | 亚洲无限观看 | 久久综合久色欧美综合狠狠 | 日本xxxx在线观看 | 国产区av| 大桥未久视频在线观看 | 神马午夜电影一区二区三区在线观看 | 久久入口| 午夜在线播放 | 九九九九热 | 国产高清免费观看 | 国产精品人人妻人人爽人人牛 | 高潮流白浆在线观看 | 激情三级在线 | 精品一区二区在线免费观看 | 免费观看黄色av | 18xxxx日本| 成人片在线免费看 | 欧美三级午夜理伦三级中视频 | 日韩精品成人无码专区免费 | 96av在线| 欧美日韩国产色 | jizz欧美性23 | 久久人妻无码aⅴ毛片a片app | 久久久久久五月天 | 午夜精品久久久久久久99热浪潮 | 日韩欧美字幕 | 97超碰色| 713电影免费播放国语 | 91夜色| 精品999www | 欧美xxxxxx片免费播放软件 | 性视频播放免费视频 | 五月天久久久久 | juliaann精品艳妇hd | 成人综合网址 | 国产特级黄色片 | 日韩一级片在线 | 欧美日韩精品区别 | 中文字幕69页 | 成人激情视频在线观看 | 涩视频在线观看 | 久久靠逼视频 | 国产一区二区黑人欧美xxxx | 韩国一区二区视频 | 天天看天天色 | 男生操女生免费网站 | 国产精品久久久久久久av | 高清av免费观看 | 性综合网 | 伊人99在线 | 淫人网 | 成人免费看片网站 | 欧美爱爱视频 | 欧美中文字幕在线观看 | 青青青在线观看视频 | 亚洲一区视频网站 | 亚洲免费二区 | 91在线精品秘密一区二区 | 一级性生活黄色片 | 欧美大尺度做爰啪啪床戏明星 | 日韩精品短片 | 免费公开在线视频 | 少妇av一区 | 91视频 - 8mav | 亚洲av无码一区二区三区四区 | 一级片亚洲 | 日韩激情av| 亚洲av片不卡无码久久 | 日韩欧美精品一区 | 国产一区二区视频网站 | 26uuu精品一区二区 | 欧美操操操 | 美日韩免费视频 | 怒海潜沙秦岭神树 | 夜夜夜夜夜操 | 九色婷婷 | 久章草在线观看 | 性歌舞团一区二区三区视频 | 精品视频不卡 | 7777久久亚洲中文字幕 | 日韩视频在线观看免费视频 | 亚洲精品在线视频观看 | 久久久久久久久久一区二区三区 | 午夜在线免费观看视频 | 秋霞精品一区二区三区 | 亚州久久久 | 中文字幕乱码一区二区 | www.成年人 | 国产特级毛片aaaaaa | 九一亚色 | 男女午夜激情视频 | 性生活视屏| 性色浪潮av | 特级毛片av | 一区二区三区四区免费 | 黄网站免费看 | 国产精品久久久久久久av福利 | 国产又黄又粗又猛又爽 | 精品视频一区二区三区四区 | 精品无码av一区二区三区不卡 | 国产免费观看视频 | 色婷网 | av官网在线观看 | 亚洲の无码国产の无码步美 | 天天操天天干天天舔 | 国产无遮挡裸体免费视频 | 黄色精品视频 | 污视频在线观看免费 | 蜜桃导航-精品导航 | 二男一女一级一片 | 69视频入口 | 日韩av中文字幕在线 | 午夜视频免费在线 | 永久免费看黄 | 亚洲乱熟女一区二区 | 中文字幕人妻一区二 | 色哟哟av| 国产午夜在线视频 | 欧美日韩有码 | 日韩在线综合 | 亚洲第一区在线播放 | 亚洲在线观看一区二区 | 91av视频免费观看 | 人人干免费 | 日韩成人区 | 女优一区二区三区 | 99热| 国产精品成人在线观看 | 亚洲美女一级片 | 相亲对象是问题学生在线观看 | 婷婷一区二区三区 | 伊人午夜 | 911国产 | 欧美一区影院 | 国内精品在线播放 | 啪啪小视频 | 中文字幕一区二区三区波野结 | www.久久伊人| 神马午夜51 | 看了下面会湿的视频 | 久久丫精品久久丫 | 3级av| 色香蕉在线视频 | 高h喷水荡肉少妇爽多p视频 | 欧日韩在线观看 | 日韩在线精品视频一区二区涩爱 | 狠狠躁日日躁夜夜躁2022麻豆 | 日本黄a三级三级三级 | 欧美影院一区二区三区 | 无码乱人伦一区二区亚洲 | 日本免费黄色网址 | 三浦惠理子aⅴ一二三区 | 日本老小玩hd老少配 | 久久久男人的天堂 | 国产成人在线视频观看 | 在线观看日本中文字幕 | 成人午夜免费在线 | 亚洲成人精品在线播放 | 9.1在线观看免费 | 日韩精品视频久久 | 最新中文字幕在线观看 | 成人欧美一区二区三区 | 亚洲国产欧美精品 | 波多野结衣视频在线播放 | 九九热这里有精品视频 | 免费欧美一级视频 | 黄色三极片 | 日本中文字幕在线看 | 高清国产在线 | 久久久.www | 国产精品999. | 永久视频 | 裸体美女免费视频网站 | 国产大屁股喷水视频在线观看 | 玩弄丰满少妇xxxxx性多毛 | 亚洲色在线视频 | 无码人妻一区二区三区一 | 国产三级播放 | 国内精品久久久久 | 69视频免费在线观看 | 日韩18p| 无码人妻精品一区二区三区99不卡 | 精品在线视频一区二区三区 | 国产伦精品一区二区三区视频痴汉 | 疯狂做爰的爽文多肉小说王爷 | 久久精品成人一区二区三区蜜臀 | 91在线最新 | 亚洲精品第一 | 精品在线第一页 | 操女人的逼逼 | 午夜免费| 日韩欧美视频在线 | 精品人妻在线一区二区三区 | 裸体裸乳被免费看视频 | 99久久99久久精品国产片 | 天海翼中文字幕 | 国产在线播放一区二区三区 | 精品国产乱码久久久久久1区二区 | 国产精品美女久久久久 | 亚洲国产精品二区 | 国产又粗又猛又爽又黄的 | 一道本一区 | 亚洲av成人精品日韩在线播放 | 一区二区三区欧美精品 | 欧美日韩一区二区三区免费 | 爽爽影院免费观看 | 97人妻精品一区二区三区免 | 不卡中文字幕 | a天堂中文在线观看 | 天天摸天天| 禁断介护av| 日韩黄色免费观看 | 欧美极品少妇xxxxⅹ裸体艺术 | 福利毛片 | 一级全黄男女免费大片 | 538在线精品 | 国产真实偷伦视频 | 欧美天堂在线视频 | 日韩欧美一区二区三区 | 在线免费看污视频 | 素人一区二区 | 一级aa毛片 | 麻豆高清视频 | 久久r | 欧美极品一区二区三区 | 四虎精品视频 | 一区二区精彩视频 | 日韩欧美在线视频免费观看 | 国产网站91| 在线1区| 69精品丰满人妻无码视频a片 | 熊出没之冬日乐翻天免费高清观看 | 都市激情国产精品 | 日韩v片 | 秋霞成人| 欧美一级一级 | 亚洲六月婷婷 | 欧美性白人极品1819hd | 欧美熟妇7777一区二区 | 狠狠搞视频 | 亚洲人成久久 | 影音先锋成人网 | 亚洲激情五月 | 亚洲在线精品 | 伊人久久天堂 | 最新激情网站 | 色婷综合| 一区二区高清在线 | 日日爽视频| 野花成人免费视频 | 天天干天天弄 | 桃色视频网站 | 国产精品入口日韩视频大尺度 | 欧美一级大片在线观看 | 国产精品视频免费播放 | 私拍在线 | 欧美日韩一二三四 | 欧美精品一区二区三区久久久 | 玖草视频在线观看 | 久久久性色精品国产免费观看 | 99国产精品久久久久久久成人 | 福利视频第一页 | 美女隐私直播 | 韩国女主播av | 人妻无码一区二区三区免费 | 亚洲性生活大片 | 欧美一级不卡视频 | 成人在线视频免费看 | 久久午夜免费视频 | 18无码粉嫩小泬无套在线观看 | 福利小视频在线播放 | av不卡网 | 哈利波特3在线观看免费版英文版 | 国产卡一卡二 | 少妇h视频 | 农村搞破鞋视频大全 | 免费三片在线播放 | 性欧美大战久久久久久久 | 日日爽日日操 | 免费人妻精品一区二区三区 | 一区二区三区四区人妻 | 成人精品在线播放 | 人妻一区二区三区四区五区 | 美女福利网站 | av在线在线 | 国产精品国色综合久久 | 欧美激情网址 | 制服丝袜亚洲色图 | 久操这里只有精品 | 日韩裸体视频 | 久久在现 | 国产一区毛片 | 国产youjizz| 国产日韩欧美另类 | 成人影片在线播放 | 免费成人在线观看视频 | 毛片看看 | 激情五月综合网 | 最新av在线网址 | 97精品视频在线 | 国产精品一级黄片 | 精品视频一区二区三区四区 | 醉酒壮男gay强迫野外xx | 五月天欧美 | 国产一区二区三区免费观看视频 | 国产精品一区二区在线 | 四色成人网 | 成人黄色短视频在线观看 | 91在线视频在线观看 | 丝袜美腿亚洲综合 | 欧美精品一区二区三区蜜臀 | 大又大粗又爽又黄少妇毛片 | 91精品久久久久久久久 | 夜夜操操操 | 亚洲视频在线观看一区二区三区 | 性久久久久久久久久久久 | 欧美日韩一二三四区 | 毛片91| 国产欧美视频在线 | 男人都懂的网址 | 免费成人av| 色婷婷18| 日韩美女毛片 | 久久精品偷拍视频 | 自拍超碰在线 | 久久精品黄色片 | 天天天天 | 色婷婷a | 久久精品99久久 | 久草新| 色天天干 | 久久综合狠狠综合久久综合88 | 国产精品久久国产精品 | 日韩无马 | 熟女俱乐部五十路六十路av | 亚洲男人天堂2024 | 欧美三级午夜理伦 | 欧美激情 国产精品 | 久久久久久国产精品免费播放 | 免费成年人视频 | 91av视频播放 | 国产精品一区二区三区免费视频 | jizzjizz亚洲 | 精品国精品国产 | 91成人在线视频 | 亚洲精品国产精品乱码不66 | 中文字幕乱码人妻一区二区三区 | 骚虎av | 亚洲综合欧美综合 | 产乳奶汁h文1v1 | 免费在线观看的av | 色天天色综合 | av一区免费 | 麻豆精品视频 | 国模无码视频一区二区三区 | 51久久久 | 精品综合 | 国产精品久久久久久影视 | 无码人妻精品一区二区三区66 | 亚洲欧美一区二区在线观看 | 热久久最新网址 | 国产精品无码久久久久久电影 | 好吊操这里只有精品 | 两性午夜视频 | 日韩黄色影视 | 99久久国产综合 | 法国性xxxx精品hd | 农村黄色片 | 精品中文字幕在线 | 精品一区二区三区在线观看 | 亚洲爱色| 日本人妖网站 | 精品动漫3d一区二区三区免费版 | 一色桃子juy758在线播放 | 9l视频自拍九色9l视频 | 久热免费在线视频 | 日本护士毛茸茸 | 成人免费无码大片a毛片 | 欧美一区自拍 | 日韩成人福利视频 | 在线中出| a级片在线播放 | 午夜性影院 | 在线观看免费黄视频 | 国产成人精品免费看视频 | 麻豆精品久久久 | 国产精品男同 | 人妻系列一区 | 黄在线网站 | 日韩无码精品一区二区 | 国模在线视频 | 可乐操亚洲 | 五月丁香综合激情六月久久 | 亚洲破处视频 | 亚洲视频在线免费播放 | 奇米777视频 | jizz视频在线观看 | 中国少妇av | 国产日皮视频 | 成人性视频网 | 91免费网站在线观看 | 欧美性开放视频 | 午夜影视在线观看 | 韩国美女毛片 | 日韩午夜剧场 | 一级特黄欧美 | 后进极品美女圆润翘臀 | 偷自拍 | 亚洲一区二区三区麻豆 | www.日本在线观看 | 重口味av| 最新日韩中文字幕 | 欧美13p| 日韩精品中文字幕在线播放 | 中文字幕被公侵犯的漂亮人妻 | 偷啪自啪 | 在线高清观看免费观看 | 久久久久久黄色 | 日产mv免费观看 | av影视网 | www.成人国产 | 亚洲一区二区伦理 | 国产美女作爱全过程免费视频 | 男女午夜激情 | 亚洲tv在线 | 五月天开心网 | 日本一区二区在线视频 | a国产视频 | 色窝窝综合色窝窝久久 | 在线观看三级视频 | 毛片免| 长河落日电视连续剧免费观看01 | 免费在线观看黄视频 | 成人另类小说 | 少妇高潮毛片色欲ava片 | 欧美乱妇视频 | 午夜影院体验区 | 日本精品视频一区二区三区 | 国产精品一级片在线观看 | 在线看片黄 | av九九九 | 久久国产欧美 | 奇米狠狠777 | 91偷拍精品一区二区三区 | 韩国美女一区二区 | 免费黄色观看 | av网站黄色| 国产精品xxxx喷水欧美 | 久久午夜免费视频 | 在线免费色 | 欧美xxxxbbbb| 电影《两个尼姑》免费播放 | 九九色九九 | 国产精品18久久久久久vr下载 | 96精品视频在线观看 | 97人妻精品视频一区 | 国产乱国产乱老熟300部视频 | 中国久久久久 | 一级免费大片 | 亚洲高清一区二区三区 | 一级片啪啪 | 色av综合网 | 国产白浆视频 | 秘密的基地 | 日韩精品一区二区三区免费视频 | 欧美大片高清免费观看 | 狠狠操婷婷 | 日韩欧美大片在线观看 | av伦理在线| 99视频只有精品 | 啪啪福利| 中文字幕亚洲无线码在线一区 | 久久精品视屏 | 欧美在线视频第一页 | 日本在线不卡一区二区 | 国产真人做爰毛片视频直播 | 亚洲天堂久 | 黑名单上的人全集免费观看 | 天堂草在线观看 | 波多野结衣一区二区三区高清av | 97色综合 | 狠狠干婷婷 | 国产精品国产精品国产专区不片 | 国产欧美一区二区在线 | 日韩久久高清 | 日韩成人在线视频观看 | 免费黄av | 成人免费毛片男人用品 | 日本激情视频一区二区三区 | 亚洲免费av网站 | 午夜av影院 | www.蜜臀| 91视频网址 | 亚洲一二三级 | 日本一本在线观看 | 亚洲一区二区美女 | 爱草在线视频 | 美女三级黄色片 | 特黄av | 国产伦精品一区二区三区免费迷 | 一色桃子juy758在线播放 | 97欧美 | 黄色小说在线看 | jizz黑人 | 亚洲成人a√ | 欧美性色视频 | 欧美a v在线播放 | 亚洲福利在线视频 | 精品视频三区 | 国产成人在线视频网站 | 久久精品第一页 | yy色综合 | 韩国三级hd中文字幕有哪些 | 被黑人猛躁10次高潮视频 | 亚洲区小说区图片区 | 蜜臀av一区二区三区有限公司 | 欧美日韩国产三区 | 丁香花在线影院观看在线播放 | 亚洲天堂网视频 | 男人的天堂狠狠干 | 欧美性天天影院 | 波多野结衣一区二区三区免费视频 | 啪啪啪毛片 | 国产在线视频网站 | 少妇无内裤下蹲露大唇视频 | 青青草原国产 | 丁香av| 国产又粗又猛又黄又爽视频 | 一级aaaa毛片 | 久久成人18免费观看 | www.一区二区三区 | 韩国一区二区三区在线观看 | 亚洲小视频在线 | 开心激情网站 | 成人av资源网 | 日本一区二区三区免费电影 | 成年人在线视频网站 | 黑人高潮一区二区三区在线看 | 黄色一机片 | 小箩莉末发育娇小性色xxxx | jizz少妇| 精彩毛片 | 国产原创在线 | 日本一区不卡在线 | www黄色 | 亚洲av无码国产精品久久 | 日韩视频欧美视频 | 精一区二区 | 奇米亚洲 | 国产黄大片在线观看画质优化 | 后进极品白嫩翘臀在线视频 | 国产欧美精品一区二区色综合朱莉 | 亚洲无av在线中文字幕 | 婷婷综合五月 | 成人av福利| 91免费版黄 | 亚洲女优在线播放 | 欧美日韩黄色一级片 | 日韩中文字幕综合 | 精品人妻无码一区二区三 | 区一区二视频 | 狠狠的干狠狠的操 | 91视频网页 | 亚洲天堂99 | 亚洲粉嫩 | 日韩在线一区视频 | 校花被c到呻吟求饶 | 亚洲精品乱码久久久久久自慰 | 国产v综合v亚洲欧美久久 | 欧美日韩八区 | 国产伦精品一区二区三区妓女 | 一区二区三区四区av | 国产一级在线免费观看 | 国产伦精品一区二区三区免费迷 | 淫岳高潮记小说 | 天天天天躁天天爱天天碰2018 | 爆操日本美女 | 人成精品 | 精品国产一二三四区 | 在线观看aa | 白嫩日本少妇做爰 | 97久久久久久久久久 | 国产吧在线 | 精品人妻一区二区免费 | 欧美黄色三级视频 | 亚洲AV无码AV吞精久久中文版 | 成人高清| 国产高清视频网站 | 欧美专区在线播放 | 免费三级在线 | 国产高清视频免费 | 国产a级片视频 | 欧美一区二区在线观看 | 亚洲视频综合 | 日本肉体xxxx裸体xxx免费 | 国产亚洲精品久久久 | av这里只有精品 | 调教驯服丰满美艳麻麻在线视频 | 少妇看片 | 欧美熟妇交换久久久久久分类 | 秘密爱大尺度做爰呻吟 | 国产精品久久久久久久裸模 | 91久久精品国产91久久 | 亚洲小说区图片区都市 | 夜色成人| 鸭子av| 99国产精 | 亚洲精品国产精品乱码不卡√香蕉 | 日韩精品2 | 特级西西444www高清大视频 | 在线视频免费观看一区 | 久久免费影院 | 美日韩丰满少妇在线观看 | 欧美日韩精品网站 | 五月激情婷婷网 | 国产伦精品一区二区三区精品 | 精品午夜一区二区三区在线观看 | 高h喷水荡肉少妇爽多p视频 | 国产一二 | 男人添女人下部高潮全视频 | 久久九九色 | melody在线高清免费观看 | 色啪网站 | 娇妻玩4p被三个男人伺候电影 | se94se欧美| 在线看日韩av | 精品久久影视 | 国产精品一区二区三区免费视频 | 亚洲最大免费视频 | 亚洲无码精品在线播放 | 波多野结衣视频网址 | 亚洲乱色熟女一区二区三区 | 欧美一级淫片 | 美女脱裤子打屁股 | 国产伦精品一区二区三区高清版禁 | 久久99精品久久久久久 | 91热久久 | 日韩久久久久久久久 | 日韩一级片中文字幕 | 蜜桃色999 | 成人精品一区日本无码网 | 性一交一乱一精一晶 | 日日噜噜夜夜爽爽 | 中文字幕日本一区 | 亚洲第一成人av | 国产成人精品无码片区在线 | 午夜伦理视频 | 精品福利在线观看 | 亚洲国产视频网站 | 在线天堂一区 | 欧美一区二区在线播放 | 黄片一区二区 | 99av国产精品欲麻豆 | 激情爱爱网站 | av网址免费 | 闺蜜张开腿让我爽了一夜 | 欧美国产精品一区二区三区 | av免费大全 | 日韩色吧 | 日韩av片在线看 | 亚洲17p | 337p粉嫩大胆噜噜噜亚瑟影院 | 国产精品一区二区三区四区视频 | 亚洲天堂av电影 | 手机看片国产日韩 | 丁香九月激情 | 中国 免费 av | 亚洲一区二区在线看 | www.九九九 | 色呦呦精品 | 69影院在线观看 | 男女无套免费视频网站动漫 | 国产区在线视频 | 爱草视频| 亚洲人在线观看视频 | 99视频热| 黄色a级大片 | 欧美精品久久久久久久久久 | 日韩av在线电影 | 亚洲热在线观看 | 午夜影视网 | 欧洲熟妇精品视频 | 一区二区三区亚洲视频 | 91三级视频 | 91原视频 | 色夜av| 香蕉视频在线网站 | 黑人巨茎大战欧美白妇 | 成人18视频在线观看 | 美女洗澡无遮挡 | 亚洲加勒比 | 999精品视频 | 内射国产内射夫妻免费频道 | av电影在线不卡 | 麻豆视频在线免费观看 | 国产亚洲精品久久久久四川人 | 欧美精品久久久久久久久老牛影院 | 欧美日韩激情网 | 亚洲色图日韩 | 欧洲精品视频在线观看 | 久草视频免费在线观看 | 亚洲中文字幕一区二区 | 日本免费在线播放 | 欧美成人乱码一区二区三区 | 日b视频免费 | 精品久久中文 | 影音先锋国产精品 | 777在线视频 | 日本美女一区 | 亚洲天堂久 | 一级午夜| 妞妞av| 国产精品98 | 麻豆网站在线播放 | 国产亚洲成av人在线观看导航 | 神马午夜电影一区二区三区在线观看 | 国产精品综合网 | 成人欧美一区二区三区黑人 | 一区二区三区日本视频 | 销魂美女一区二区 | 美女扒开大腿让男人桶 | 亚洲欧美福利 | 精品人妻一区二区三区免费看 | 成色网| 90岁老太婆乱淫 | 亚洲六月丁香色婷婷综合久久 | 欧美嫩交 | 夜夜天堂 | 国产人妻精品一区二区三区不卡 | 久久久久黄 | 激情女主播 | 久久精品人妻av一区二区三区 | 国产免费一区二区三区四区五区 | 二区在线视频 | 欧美做爰猛烈床戏大尺度 | 久久久免费观看视频 | 日韩中文字幕 | 嫩草视频国产 | 精品少妇爆乳无码av无码专区 | 欧美高清成人 | 日韩高清二区 | 女人喂男人奶水做爰视频 | 亚洲第一免费播放区 | 国产精品揄拍一区二区 | www.久久精品视频 | 超碰免费观看 | 免费a v在线 | 亚洲日本一区二区三区 | 青娱乐国产精品 | 精品国产999 | 香蕉久久综合 | 日韩人妻精品一区二区三区 | 亚洲欧美日韩久久精品 | a√国产 | 国产综合视频一区二区 | 青青青青操 | 免费网站在线观看黄色 | 国产黄视频在线观看 | 欧美日韩午夜爽爽 | 在线观看亚洲网站 | 一区二区三区美女 | 国产精品99久久久久久久久久久久 | 最新自拍偷拍 | 欧美日韩另类在线 | 日本久久久网站 | 欧美少妇bbw| 欧美性猛交ⅹxx | 黄色的网站在线 | 国产精品自产拍高潮在线观看 | 李丽珍裸体午夜理伦片 | 网友自拍第一页 | 免费看污黄网站在线观看 | 福利在线视频观看 | 人人艹视频 | 日韩欧美在线一区二区 | 91丨国产丨捆绑调教 | 国产第九页 | 久久久久色 | 婷婷综合在线 | 国产精品情侣自拍 | 精品视频久久久久久 | 老头av | 久久男人精品 | 色久视频| 三级网站在线播放 | 中文字幕一区二区三区四区不卡 | 在线观看国产网站 | 男人影院在线观看 | 久久久久影视 | 国产精品激情偷乱一区二区∴ | 97在线免费 | 激情五月在线观看 | 亚洲伦理在线播放 | 波多野结衣视频在线 | 波多野结衣a v在线 国产女女调教女同 | 婷婷丁香五 | 午夜试看120秒 | 日本公妇乱淫免费视频一区三区 | 特级毛片爽www免费版 | 国产精品www色诱视频 | 午夜精品网站 | 日本性生活一级片 | 秋霞毛片 | 亚洲AV无码乱码国产精品色欲 | 永久视频 | 美女裸体跪姿扒开屁股无内裤 | 日本一区二区在线播放 | 国产亚洲欧美在线 | 欧美日韩一区二区三区四区五区六区 | 亚洲视频精品在线观看 | 亚洲免费黄色网 | 欧美激情一区二区三区四区 | 国产精品毛片va一区二区三区 | 夜夜爽影院 | 精品福利视频一区二区 | 日韩欧美一级大片 | jizzjizz国产| 久久av秘一区二区三区 | 亚洲男人的天堂网站 | 久久不射网站 | 国产伦精品一区二区三区视频免费 | 国产综合网站 | 日日夜夜精| 中文字幕免费看 | 5566毛片 | 51成人 | 亚洲网视频 | 国产精品白嫩极品美女视频 | 一本无码aⅴ久久久国产 | 亚洲激情综合网 | 天堂а√在线中文在线 | 色多多视频在线 | 成年人看的羞羞网站 | 成人久久久| 777精品视频| 激情图片在线视频 | 最新中文字幕av | 日韩一区二区三区在线观看视频 | 亚洲精品综合在线观看 | 91在线观看免费高清完整版在线观看 | 色视屏 | 人人爽av| 丝袜 亚洲 另类 国产 制服 | 久久亚洲av午夜福利精品一区 | 日韩 欧美 国产 综合 | 色黄大色黄女片免费中国 | 色网在线观看 | 国产精品嫩草久久久久 | 国产黄色观看 | 91精品视频网站 | 国产1区二区 | 欧美日韩精品区别 | 国产人妻互换一区二区 | 在线观看视频一区二区 | 日日射天天操 | 99热这里 | 性色浪潮av | 欧美国产中文字幕 | 丁香六月婷婷激情 | 亚洲激情a | 欧美色图首页 | 黄色在线视频观看 | 91在线免费看 | 成人精品毛片 | 国产露脸无套对白在线播放 | 影音先锋中文字幕在线播放 | 国产999精品| 亚洲一级一级 | 成年人免费在线观看视频网站 | a在线一区 | 欧美日韩中文国产 | 亚洲日本视频 | 国产二区自拍 | 黑人性视频 | 婷婷另类小说 | 日韩精品一区二区三 | 国产www在线| 日韩在线网 | 欧美一级大片免费看 | 午夜精品在线 | 久久久久人妻精品色欧美 | 懂色av | 日本美女视频网站 | 日韩中文字幕一区二区三区四区 | 欧美色图3p| 黄色av影视| 国产成人综合久久 | 流白浆视频 | 开元在线观看视频国语 | 国产又黄又 | 99在线精品视频免费观看20 | 欧美一区三区二区在线观看 | 色又黄又爽 | 天堂视频免费 | 成人三级在线播放 | 欧美劲爆第一页 | 少妇无套高潮一二三区 | 男人亚洲天堂 | 日韩操操操 | 国产中文字幕第一页 | 新天堂网 | 超碰青娱乐 | 亚洲免费色视频 | 天天综合网国产 | 成人午夜视频免费观看 | 日韩欧美不卡视频 | 亚洲高清视频网站 | 亚洲网站av | 麻豆精品在线看 | 欧美日韩一卡二卡 | 黑丝啪啪 | 福利视频亚洲 | 少妇被又大又粗又爽毛片久久黑人 | 亚洲污网站| 国产丰满大乳奶水在线视频 | 日本精品久久久 | 日本一级二级视频 | 久久久国产成人 | 久久免费av| 日韩影院一区二区 | 亚洲一区二区三区免费在线观看 | 亚洲av无码一区二区三区性色 | 波多野结衣视频在线 | 美女张开腿让人桶 | 一区二区三区精品国产 | 国产一线二线在线观看 | 国产免费av在线 | 亚洲精品中文字幕在线观看 | 日韩国产免费 | 久久666| 聚色av| 特黄特色大片免费播放器使用方法 | 久久久久国产一区 | 啪啪自拍| 日韩中文字幕精品视频 | 四虎永久免费观看 | 精品久久电影 | 国产精品一二三四五区 | 国产伦一区二区三区 | 欧美一级片a | 在线免费观看毛片 | 亚洲激情网 | 久久国产劲爆∧v内射 | 欧美日韩中文字幕在线播放 | www.伊人.com | 国产 xxxx | 自拍偷在线精品自拍偷无码专区 | 国产一区一一区高清不卡 | 精品国产乱码久久久久久郑州公司 | 香蕉爱爱视频 | 国产观看 | 涩涩av| 久久社区视频 | 荷兰av| 精品丝袜一区 | 北条麻妃99精品青青久久 | 99国内揄拍国内精品人妻免费 | 成人污在线 | 日本欧美不卡 | a∨视频 | 免看黄大片aa | 成人黄色在线观看视频 | 毛片无码一区二区三区a片视频 | 人妻少妇精品无码专区 | 人人妻人人澡人人爽人人精品 | 日韩精品在线观看免费 | 欲乱美女| 高清国产午夜精品久久久久久 | 一本在线免费视频 | 四虎影院在线免费播放 | 免费观看视频在线观看 | www国产亚洲精品 | 免费午夜网站 | 国产激情片 | 茄子香蕉视频 | av视屏| 色屋在线 | 国产精品麻豆一区二区三区 | 疯狂少妇| 亚洲一区二区三区四区五区xx | 在线观看黄色免费视频 | 欧美日韩国产不卡 | 欧美精品第1页 | 国产一二三在线观看 | 成人污污视频在线观看 | 亚欧精品在线观看 | 天天干夜夜拍 | 波多野结衣电车痴汉 | 日本免费成人 | 欧美在线一二 | 欧美一区网站 | 91国偷自产一区二区三区老熟女 | 欧美性猛交一区二区三区精品 | 日日操夜夜爽 | 亚洲二区在线播放视频 | 国产成人综合在线观看 | 精一区二区 | 成人区人妻精品一区 | 天美麻花果冻视频大全英文版 | 一个人在线观看www 国产精品永久久久久久久久久 | 91av麻豆 | 97欧美| 夜色综合网 | 24小时日本在线www免费的 | 亚洲精品免费电影 | 日本做受| 亚洲美女在线播放 | 亚洲精品久久一区二区三区777 | 欧美激情一区二区在线 | 玖草视频在线观看 | 波多野结衣电影在线播放 | 黄色三级av | 中文字幕日韩视频 | 欧洲av一区二区三区 | www.蜜臀| аⅴ天堂中文在线网 | 亚洲色图欧美视频 | 一区二区三区在线视频播放 | 欧美处女 | 操色网 | 奇米888一区二区三区 | 黄色av片三级三级三级免费看 | 国产67194 | 国产在线一卡二卡 | 婷婷五月综合激情 | 欧美在线不卡 | 极品美女av | 亚洲精品乱码久久久久久不卡 | 中文字幕25页 | 国产亚洲精品av | 亚洲欧美一区二区三区情侣bbw | av片子在线观看 | 日本精品国产 | 无码h肉动漫在线观看 | 亚洲天堂av一区二区 | 日韩欧美视频免费在线观看 | 国产精品成人一区二区三区电影毛片 | 最近中文在线观看 | 恶虐女帝安卓汉化版最新版本 | 蜜桃tv在线观看 | 欧美精品成人在线 | 软萌小仙自慰喷白浆 | 丁香花在线影院观看在线播放 | 影音先锋中文字幕一区二区 | 91视频高清| 国产三级播放 | 久久亚洲a v | www精品一区二区三区 | а√在线中文网新版地址在线 | 天使色吧 | 欧美三级大片 | 男操女视频免费 | 亚洲色精品三区二区一区 | 黑人一级女人全片 | 久久久久久毛片 | 欧美高清性xxxxhdvideosex | a一级免费视频 | 色戒电影未测减除版 | 男生操女生在线观看 | 亚洲一区二区三区 | 日本特黄网站 | 亚洲美女网站 | 夜色成人| 呦呦av | 美女91网站 | 免费中文字幕日韩欧美 | 久色成人网 | 婷婷成人在线 | 午夜福利视频合集1000 | 亚洲精品一区二区三区区别 | av在线等| 神马伦理影视 | 在线免费观看视频 | 国产在线喷水 | 欧美高清视频在线观看 | 性户外野战hd | 欧美一级性片 | 成人爱爱网站 | 最新av| 伊人久久国产精品 | 久久亚洲美女 | 久久综合九色综合欧美狠狠 | 全黄一级裸体片 | 日韩在线中文字幕视频 | 少妇脱了内裤让我添 | 亚洲免费福利 | 瑟瑟网站免费 | 亚洲国产精品成人va在线观看 | 欧美一区二区视频在线观看 | 图书馆的女友动漫在线观看 | а中文在线天堂 | 999黄色片 | 日韩在线观看第一页 | 亚洲欧美视频一区二区 | 午夜影院免费在线观看 | 狠久久 | 日本一本久 | 精品国产va久久久久久久 | av影视在线观看 | 日韩成人精品一区二区 | 国产精品1页 | 伊人久操| 欧美特级黄色录像 | 欧美自拍偷拍 | 黄色网址www| 亚洲精品乱码久久 | ww欧美| 国精产品一二三区精华液 | 亚洲精品免费看 | 国产三级国产精品 | 夜夜操夜夜摸 | 极品国产在线 | 日本特级黄色片 | 亚洲AV无码成人精品一区 | 四虎影成人精品a片 | 粉嫩av一区二区三区 | 黄色网址多少 | 亚洲码视频 | 男人天堂av网 | 日本大胆人体视频 | 美女调教视频 | a视频在线观看免费 | 亚洲精品无码久久 | 亚洲一区a| av第一福利大全导航 | 欧美sm极限捆绑bd | 免费无码国产v片在线观看 无码乱人伦一区二区亚洲 国产精品av免费观看 | 国产三级三级看三级 | 欧美精品偷拍 | 男女激情久久 | 国产精品自产拍高潮在线观看 | 日韩亚洲一区二区 | 欲色综合 | 天堂a视频| 国产精品高清网站 | 欧美人妻少妇一区二区三区 | 综合色站导航 | 肉丝美足丝袜一区二区三区四 | 亚洲a免费 | 黄色在线视频播放 | 久久久www成人免费毛片 | 婷婷六月丁 | 美女毛片视频 | 国产三级在线观看视频 | 免费黄网站在线观看 | 东京热加勒比无码少妇 | 久草精品在线观看 | 欧美性受xxx黑人xyx性爽 | 欧美亚韩一区二区三区 | 在线视频日韩精品 | 欧美韩国日本一区 | 亚洲一区二区三区三州 | 青草久久久 | 亚洲精品高清无码视频 | 在线播放一区 | 欧美99| 美国成人免费视频 | 久久99伊人 | 亚洲无限看 | 国产日产亚洲系列最新 | 久久深夜福利 | 在线视频免费播放 | 美女被到爽高潮视频 | 爆操日本美女 | 欧美在线观看一区 | 亚洲色图校园春色 | 黑人极品ⅴideos精品欧美棵 | 亚洲一区二区观看 | 91视频播放器| 木木影院 | 国产主播精品在线 | 日韩免费av | 国产午夜精品一区二区理论影院 | 乱色精品无码一区二区国产盗 | 久久xx | 亚洲熟女乱色综合亚洲小说 | 日本草草影院 | 中文字幕精品久久久久人妻红杏ⅰ | 久久欧美视频 | 激情网久久 | 成人国产精品免费 | 欧洲一级黄色片 | 成人不卡 | 涩涩一区 | 香蕉成人在线视频 | 色com| 三年中文在线观看免费观看 | 男人天堂99 | 成人在线你懂的 | 欧美日韩国产不卡 | 99精品一区二区三区无码吞精 | 91天堂在线 | 亚洲乱码国产一区三区 | 欧美 日韩 国产 中文 | 亚洲高清视频免费观看 | 亚洲婷婷久久综合 | 成年人免费在线观看视频网站 | 欧美xxxx黑人 | 乳孔很大能进去的av番号 | 日韩一区二区精品 | 美女黄色一级视频 | 欧美精品18videosex性欧美 | 狠狠操女人 | 色呦呦中文字幕 | 国产视频一区二区三 | 国产一区二区在线观看视频 | 亚洲第一视频在线观看 | 麻豆精品国产精华精华液好用吗 | 欧美国产中文字幕 | 国产激情一区二区三区视频免樱桃 | 在线超碰av| 欧美综合一区二区三区 | 人与动物2免费观看完整版电影高清 | 午夜视频在线观看免费视频 | 欧美激情影音先锋 | 91极品在线| 黄色a在线观看 | 任你操精品 | 日韩一区二区在线视频 | xzjzjzjzjzj欧美大片 | 亚洲国产精品久久久久久久 | 999视频在线观看 | 国产精品福利一区 | www.久久久久久久久久 | 国产精品无码免费播放 | 日韩精品视频在线看 | 国产成人在线视频播放 | 国产黄色高清视频 | 欧美三级午夜理伦三级小说 | 欧美人体一区二区三区 | 雷电将军和丘丘人繁衍后代视频 | 欧美久久网 | 麻豆亚洲av成人无码久久精品 | 欧美,日韩,国产在线 | 欧美第七页| 夜色伊人| 囯产精品久久久久久 | 日韩国产欧美综合 | 久久精品无码专区 | 色天天综合 | 新超碰在线 | 亚洲自拍色图 | 四虎在线免费视频 | 精品一区二区三区久久久 | 男人的天堂在线视频 | 嫩草影院在线免费观看 | 男人操女人的免费视频 | 韩国黄色一级片 | 欧美激情精品久久久久久 | 国产欧美日韩精品一区 | 日韩电影一区二区在线观看 | 区一区二在线观看 | 最近中文字幕mv免费高清在线 | 男女在线视频 | 国产网站在线免费观看 | www.日本高清| 热播之家| 日韩中文字幕一区二区 | 狼人伊人干 | 日吊视频| 无遮挡aaaaa大片免费看 | 91毛片在线观看 | 蜜臀av性久久久久蜜臀aⅴ | 乡村乱淫 | 亚洲乱码精品久久久久.. | 国产精品人人做人人爽 | 一区二区三区视频播放 | 日本女优在线看 | 成人性生交7777 | 中文字幕性 | 猫咪av在线 | 精品视频一区二区在线 | 亚洲一级一区 | 毛片基地在线播放 | 在线观看免费视频黄 | 午夜剧场免费观看 | 欧美精品人妻一区二区 | 国产精品免费一区二区三区四区 | 国产女人18毛片 | 色77777 | 91porny九色| 精品人妻人人做人人爽夜夜爽 | 福利社午夜 | 天天碰天天干 | 国产精品久久精品 | www日本高清视频 | 神马午夜电影一区二区三区在线观看 | 日韩一区二区毛片 | mm131亚洲精品 | 亚洲精品鲁一鲁一区二区三区 | 国产a国产| av调教| 强公把我次次高潮hd | 婷婷综合在线 | 亚洲视频456 | 91精品人妻互换一区二区 | 浴室里强摁做开腿呻吟男男 | 荒岛淫众女h文小说 | 亚洲精品一区二区三区精华液 | 国产乱子伦视频一区二区三区 | 手机版av| 91成品人影院| 夜夜草网 | 国产12页| 亚洲欧洲国产日韩 | 成人精品影院 | 日本精品影院 | 国产熟妇一区二区三区四区 | 国产精品丝袜视频无码一区69 | 99国产精品久久久久久久成人热 | 国产偷人爽久久久久久老妇app | 夜夜操夜夜爽 | 综合国产精品 | 亚洲黄色激情视频 | 欧美不卡一区二区三区 | 啪啪一级片 | 得得的爱在线视频 | 人妻一区二区三区四区五区 | av官网在线| 国产伦精品视频一区二区三区 | 亚洲乱码久久 | 肉色欧美久久久久久久免费看 | 欧美少妇一区二区三区 | 亚洲精品99久久久久中文字幕 | 狠狠干超碰| 国产69精品久久久久999小说 | 超碰人人cao | 天天操天天看 | 99精品久久精品一区二区 | 美女一区二区三区四区 | 影音先锋男人天堂 | 亚洲作爱 | 午夜在线精品偷拍 | 黄色小说在线视频 | 特大巨交吊性xxxx | 亚洲视频在线免费 | 久久精品噜噜噜成人88aⅴ | 激情影院内射美女 | 免费播放片大片 | 国产精品揄拍一区二区 | 各处沟厕大尺度偷拍女厕嘘嘘 | 五月天婷婷导航 | jzjzjzjzj亚洲成熟少妇 | 欧美成人激情视频 | 99精品视频在线观看免费 | 封神榜二在线高清免费观看 | 久久一精品| 蜜桃成人无码区免费视频网站 | 无遮挡又爽又刺激的视频 | 蜜桃精品在线 | 麻豆网站在线免费观看 | 日日爱av| 国产一区免费在线 | 成熟妇人a片免费看网站 | 国产成人精品亚洲男人的天堂 | 国产在线一区视频 | 亚洲在线a| 黄色xxxxx| 国产高清av在线 | aaa级黄色片 | 国产精品一品二区三区的使用体验 | 国产偷拍一区二区三区 | 成人免费激情视频 | 日韩欧美视频免费在线观看 | 国产精品一区二区自拍 | 久免费一级suv好看的国产 | 69pao| 欧美一区二区三区成人久久片 | 999av视频 | 男男啪啪无遮挡 | 亚洲一级片在线观看 | 色图视频 | 国产99热 | 人妻少妇精品无码专区二区 | 玖玖在线资源 | 欧美射| 少妇丰满尤物大尺度写真 | 麻豆一区二区三区 | 怨女1988国语版在线观看高清 | 无遮挡黄色 | 黄色国产大片 | 在线免费黄色片 | 少妇在军营h文高辣 | 老司机精品视频在线播放 | 人人草在线视频 | 狠狠操天天射 | 国产真实乱偷精品视频 | 国产精品第8页 | 夜夜爽夜夜爽 | 毛片大片| 操你啦在线视频 | 亚洲高清免费视频 | 五月婷婷网| 国产奶头好大揉着好爽视频 | 午夜视频在线观看一区 | 日本精品999 | 两个女人互添下身爱爱 | 日韩免费在线看 | 日本黄色片一级 | 国产伦精品 | 色婷在线 | 涩涩视频网站在线观看 | 中日精品一色哟哟 | 亚洲av无码一区二区二三区 | 官场艳妇疯狂性关系 | 精品国产99一区二区乱码综合 | 日韩精品少妇 | 五月天婷婷激情 | 三上悠亚一区二区在线观看 | 久久精品国产亚洲AV黑人 | 国产亚洲精品美女久久久久 | 关秀媚三级| www.一区二区| 久久久久久久久91 | 欧美色88 | www.伊人.com| 中文字幕在线观看二区 | 视频毛片| 性生活三级视频 | xxxxhdvideos| 国产欧美日韩综合精品一区二区三区 | 成人欧美一区二区三区黑人 | 成人午夜福利视频 | 夜夜春很很躁夜夜躁 | 青青草www| 国产精品伦一区二区三区免费看 | 国产精品作爱 | 国产高潮自拍 | 人人妻人人澡人人爽精品 | 二区三区在线观看 | 天天躁夜夜操 | 综合五月婷 | 97国产精品视频人人做人人爱 | 中文字av | 放几个免费的毛片出来看 | 男人撒尿视频xvideos | 手机在线免费视频 | 国产中出 | xxxx国产视频 | 真人毛片97级无遮挡精品 | 成人在线视频在线观看 | 爆操白虎| 欧美成人手机在线 | 久久久久久久蜜桃 | 在线观看成人 | 国产亚洲色婷婷久久99精品91 | 久久99综合| 国产精品国产自产拍高清av | 91网站在线播放 | 爱就操 | 疯狂做受xxxx高潮人妖 | 欧美人妻一区二区 | 涩涩免费网站 | 亚洲欧美一区二区三区久久 | 三级亚洲欧美 | 51妺嘿嘿午夜福利 | 九九热在线观看 | 久久五月激情 | 逼逼av| 亚洲精品乱码久久久久久蜜桃麻豆 | 国产欧美一区二区三区在线老狼 | 一级片视频免费 | xxxx在线播放 | 欧美在线一区视频 | 亚洲天天综合网 | 精品视频第一页 | 99综合色| 四虎影院在线视频 | 免费的黄色av| 不卡影院一区二区 | 一区二区三区免费在线视频 | 爱爱视频日本 | www.youjizz日本| 亚洲国产视频在线 | 四色永久访问 | 午夜不卡影院 | 天天射,天天干 | 亚洲国产免费看 | 国产成人亚洲欧洲在线 | 欧美另类精品xxxx孕妇 | www.亚洲欧美| 国产精品美女毛片真酒店 | 国产成人精品视频在线 | 久久久精品影视 | 中国黄色片视频 | 亚洲永久在线观看 | 加勒比av在线播放 | 久久国| 人妻天天爽夜夜爽一区二区三区 | zzjizzji亚洲日本少妇 | 69国产视频 | 欧美在线视频免费 | 在线观看免费观看 | 91嫩草精品| 久久亚洲av午夜福利精品一区 | 夜av| 黄色动漫软件 | 8x8x成人| 日本一级三级三级三级 | 一区二区三区在线免费视频 | 九九热re| 偷自在线 | 这里只有精品视频在线 | 国产学生美女无遮拦高潮视频 | 中国美女囗交视频 | 国产一级淫片免费 | 久久精品国产亚洲av高清色欲 | 丁香六月五月婷婷 | 国产思思99re99在线观看 | 国产丝袜一区二区三区 | 自慰无码一区二区三区 | 97人人澡人人爽人人模亚洲 | 17c国产精品一区二区 | 精品国产乱码久久久久久图片 | 久久99精品波多结衣一区 | 欧美一区二区三区成人 | 无码人妻精品一区二区蜜桃网站 | av成人免费在线观看 | 免费成人在线观看动漫 | 国产精品成人va在线观看 | 午夜两性视频 | 国产传媒在线播放 | 天天草影院 | 男生捅女生肌肌 | 亚洲第一成人网站 | 成人爽a毛片一区二区免费 亚洲激情片 | 亚洲欧美日本另类 | 在线少妇 | 免费一级黄色片 | 狠狠艹狠狠干 | 456亚洲影视 | 亚洲视频国产精品 | 国产熟妇搡bbbb搡bbbb搡 | 一品毛片| 99热最新 | 一区国产精品 | 伊人免费视频二 | 午夜影院免费体验区 | 91激情在线观看 | 另类小说色 | 怡红院久久 | www网站在线免费观看 | 加勒比一区在线 | 日韩黄色一级视频 | 免费在线观看视频 | 少妇aaaaa| 超碰91在线| 欧美性生交xxxxx久久久缅北 | 九九黄色 | 欧美成人一区二区 | 91成人在线播放 | 国产又大又黄又粗 | 爱爱视频网址 | 日本体内she精高潮 精品综合在线 | 无码日本精品xxxxxxxxx | 日韩av手机在线观看 | 91精品成人| av大片在线播放 | 欧美18免费视频 | 老妇裸体性激交老太视频 | 国产中文字幕在线 | 日本伦理中文字幕 | 91成年版 | 经典三级第一页 | 在线欧美国产 | 经典一区二区三区 | 手机看片福利视频 | 波多野结衣激情视频 | 久久九九久精品国产免费直播 | 男人的av| 精品无码人妻少妇久久久久久 | 新婚之夜玷污岳丰满少妇在线观看 | 美国少妇在线观看免费 | 欧美特级黄色 | 国产一级免费av | 爱情岛av永久入口 | www.黄色小说.com| 精品人妻互换一区二区三区 | 日本欧美在线观看 | 午夜伦理一区二区 | 国产一区二区欧美日韩 | av毛片在线免费观看 | 精品国产系列 | 国产精品久久久久三级无码 | japanese24hdxxxx中文字幕 | 久久久久女教师免费一区 | 乱xxxxx普通话对白 | 国产成人精品免费看视频 | 人物动物互动39集免费观看 | 欧洲一区二区三区四区 | 欧美日韩精品一区二区在线播放 | 男女拍拍拍网站 | 久久久久中文字幕亚洲精品 | 亚色在线观看 | 国产高清久久久 | 野花视频在线免费观看 | 亚洲免费小视频 | 催眠调教后宫乱淫校园 | xxav在线| av国产在线观看 | 国产精品人人妻人人爽 | 中文字幕精品一区二区三区精品 | 久久黄色网址 | 亚洲成av人片一区二区梦乃 | 修女也疯狂3免费观看完整版 | 91在线视频导航 | 日本欧美在线播放 | 亚洲色图综合网 | 欧美一区二区在线视频观看 | 欧美不卡在线视频 | 日韩午夜视频在线观看 | 91干干 | 黄色茄子视频 | 在线h网 | 很黄很污的视频 | 国产精品偷乱一区二区三区 | 成人毛片视频在线观看 | 草莓视频18免费观看 | 91蜜桃传媒精品久久久一区二区 | 日本美女交配 | 无码人妻一区二区三区免费 | 日日日日操 | jlzzjizz在线播放观看 | 日本国产三级xxxxxx | 欧美一级爆毛片 | 国产伦精品一区三区精东 | 男人天堂a | 欧美性大战久久久久久 | 色妞综合 | 人人爽人人爱 | 精品视频日韩 | 国产中文字幕免费 | 国产成人无遮挡在线视频 | 狠狠干2023| 国产污污在线观看 | 国产视频一区在线 | 日韩操比 | 日韩三级久久 | 成人深夜视频 | 日韩精品国产一区 | 激情综合图区 | 天天视频天天爽 | 91精品国产91久久久久久吃药 | 亚洲高清免费观看 | 啪啪免费 | 青青草原一区二区 | 日本阿v视频在线观看 | 极品白嫩丰满美女无套 | 精品不卡在线 | 亚洲AV成人无码网站天堂久久 | 欧美亚洲国产成人 | 丰满少妇一区 | 激情综合五月网 | 亚洲av成人无码一二三在线观看 | 精品国产乱码久久久久 | 久99| 一二三四视频社区在线 | 欧美成人精品激情在线视频 | 日韩欧美一区二区三区免费观看 | 女人喂男人奶水做爰视频 | 性欧美日本 | 亚洲国产精品久久久久爰性色 | 日韩中文字幕免费在线观看 | 成年人的视频网站 | 人人澡人人草 | 一级片a级片 | 日韩色网| 一级片免费观看视频 | 婷婷亚洲综合 | 亚洲精品国产av | 日鲁鲁 | h网站在线看 | 亚洲精品6| 国产成人精品无码免费看81 | 国产又大又粗又硬 | 国产乱国产乱老熟300部视频 | 国产又粗又大又硬 | 亚洲av无码一区二区三区在线播放 | 五月天色站| 91精品国产成人观看 | 91免费 看片 | 亚洲在线不卡 | 亚洲天堂av女优 | 日韩福利电影在线 | 99热3| 国产中文字幕一区二区三区 | 国产一级二级三级精品 | 国产一二视频 | 精品国产午夜福利在线观看 | 电影桑叶2在线播放完整版 成人午夜淫片100集 | a一级网站| 97在线视频观看 | 国产激情在线观看 | 日本伊人影院 | 国产特黄大片aaaa毛片 | 天堂在线精品视频 | 91快射 | 中文字幕高清视频 | 少妇xxxx| 青青青草视频在线观看 | 青青青草视频在线观看 | 高清黄色一级片 | 91视频综合网 | 国产精品视频免费看 | 国产人人草 | 久久亚洲AV成人无码一二三 | 中文字幕日韩高清 | 国产一区在线看 | 狠狠综合一区 | 苍井空亚洲精品aa片在线播放 | 男女做那个的全过程 | 国产精品自产拍 | 在线视频黄 | 麻豆av影院| 丰满少妇一区 | 免费淫片 | 亚洲免费在线视频观看 | 国模精品一区二区三区 | 国产偷人爽久久久久久老妇app | 波多野结衣在线观看一区二区 | 精品热 | 欧美激情第二页 | 最好看的mv中文字幕国语电影 | 午夜免费网址 | 中文字幕乱码一区二区三区 | 国产精品美女在线 | 中文字幕一区二区视频 | 日韩一卡二卡 | 国产福利视频一区二区 | 国产一区二区视频免费观看 | 国产青青操| 国产女人18毛片水真多 | 中文字幕丰满人伦在线 | 久久久久亚洲精品系列色欲 | 久久五月视频 | 欧美美女性生活 | 欧美乱论视频 | 九九视频在线免费观看 | 在线看黄网 | 久婷婷| 美女又黄又免费 | 免费a级| 日批视频在线 | 99久久国产热无码精品免费 | 香蕉视频免费看 | 狠狠综合久久av一区二区 | 中文字幕免 | 国产免费不卡 | 黄色aaa大片 | 日韩av在线一区 | 中文字幕乱码亚洲精品一区 |