青青草原av-午夜视频免费看-免费久久久-中国av片-欧美一级欧美三级在线观看-火影忍者羞羞漫画-成av人片在线观看www-国产日本亚洲-欧美视频在线免费-日本韩国在线-在线日韩中文字幕-国产成人三级在线播放-久久福利在线-老司机免费精品视频-男人操女人逼逼视频-av大片免费-欧美精品第二页-操校花视频-欧美插插视频-优优色综合

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

婷婷激情小说网 | 字幕网在线| 天天射日日操 | 日日射夜夜 | 国产福利视频一区二区 | 在线免费观看黄网站 | 日韩av电影在线播放 | 日韩精品国产精品 | 欧美a级在线免费观看 | 日本少妇电影 | 亚洲精品国产精品乱码视色 | 骚色综合 | 成人美女免费网站视频 | 中文字幕日韩精品无码内射 | 新婚之夜玷污岳丰满少妇在线观看 | 九九福利视频 | 少妇一级淫免费观看 | 都市豪门艳霸淫美妇 | 欧美一级片免费 | 黄色免费在线看 | 午夜精品久久久久久久久久久久久蜜桃 | 天天操导航 | 国产黄色片在线免费观看 | av高清在线免费观看 | 成人妇女淫片aaaa视频 | 国产喷白浆一区二区三区 | 91美女网 | 欧美自偷自拍 | 91成品视频| 男人激烈吮乳吃奶爽文 | 青青草国产一区二区三区 | 麻豆av网| 国产精品久久久精品三级 | 国产精视频 | 日韩成人在线看 | 深田咏美在线x99av | 99在线视频播放 | 国产精品亚洲一区二区三区在线观看 | 国产一二区视频 | av尤物 | 国产又大又黄视频 | 草莓视频在线观看入口w | 激情图片在线视频 | 亚洲老女人视频 | 欧美激情一区二区 | 亚洲国产日韩精品 | 大战熟女丰满人妻av | www.国产麻豆| 日本中文字幕不卡 | 成人网久久| 日韩欧美国产另类 | www日本视频| 禁果av一区二区三区 | 日韩在线免费av | 性色综合| 色爽| 91视频 - 8mav | 国产成人无码精品久久久久久 | 老妇free性videosxx | 亚洲中国色老太 | 涩涩在线观看 | 好邻居韩国剧在线观看 | 日本中文在线视频 | 欧美日韩在线网站 | 90岁老太婆乱淫 | 台湾swag在线观看 | 日韩超碰| 亚洲网站在线免费观看 | 樱桃视频一区二区三区 | 亚洲精品中文在线 | 亚洲一区在线免费观看 | 99精品免费在线观看 | 男女视频在线观看 | 午夜成年人视频 | 久久天天干 | 懂色av蜜臀av粉嫩av分享吧最新章节 | 午夜国产一区二区三区 | 久久久久久久亚洲av无码 | 深爱五月激情五月 | 91久久精品国产91久久性色tv | 亚洲爽妇网 | 天堂网一区二区 | 国产精品国产精品国产专区 | 在线观看亚洲 | 欧美激情在线一区 | 在线播放国产一区 | 国产特级黄色录像 | 少妇无码av无码专区在线观看 | 欧美大片在线看免费观看 | 91一起草 | 一级理论片 | 久久色在线视频 | 黄色高清视频 | 一级视频黄色 | 五月婷婷导航 | 91精品国产入口在线 | 中国免费观看的视频 | 尤物精品视频在线观看 | 国产亚洲色婷婷久久 | 国产福利一区二区 | 欧美久久久久久久久 | 中文字幕+乱码+中文乱 | 污视频在线网站 | 国产精品无码人妻一区二区在线 | 韩国一区二区三区视频 | 性日韩 | 日本一二区视频 | 毛片aaaaaa| 亚洲成人7777| 亚洲熟妇av乱码在线观看 | 亚洲欧美乱日韩乱国产 | 亚洲美女毛片 | 女人的洗澡毛片毛多 | 韩国黄色av| 蜜桃久久久久久 | 韩国伦理电影免费在线 | 国产丝袜视频在线观看 | 日本一区二区在线不卡 | 网址在线观看你懂的 | 国产精品久久久久无码av色戒 | 日本十八禁视频无遮挡 | 超碰在线观看免费版 | 免费一级a毛片 | 欧美丰满熟妇bbbbbb | 亚洲第一大综合区 | 波多野结衣小视频 | 人人干天天干 | 久久久久久久久国产精品一区 | 蕾丝视频污 | 国产精品久久久久久久专区 | 国产日产欧美一区二区三区 | 国产精品一区二区av | 国内外成人在线视频 | 欧美 日韩 国产 成人 在线观看 | 已满18岁免费观看电视连续剧 | 花房姑娘免费观看全集 | 91中文字幕在线视频 | 99久久精品一区二区成人 | 免费观看日批视频 | 日本123区 | 国产亚洲色婷婷久久99精品 | 蜜桃av中文字幕 | 视频一区欧美 | av久色| 草草影院国产第一页 | 日本爽妇网 | 精品人妻一区二区三 | 一区二区三区激情 | 午夜剧场免费看 | 日日爽夜夜操 | 91亚洲精品久久久久久久久久久久 | 欧美一区综合 | www.国产在线 | 一本在线免费视频 | www亚洲国产 | 国产永久精品 | 国产区视频 | 国产超级av| 97人妻精品一区二区 | 国产成人专区 | 亚洲理论电影在线观看 | 精品久久免费 | 69精品人妻一区二区三区 | 久久六| 波多野结衣福利 | 国产一卡二卡在线播放 | 女人被男人躁得好爽免费视频 | 国产精品国语自产拍在线观看 | 精品天堂 | 亚洲啪啪网 | 久久国产伊人 | 国产精品国产av | 国产电影一区二区三区爱妃记 | 三级a毛片 | 色香蕉视频 | 成人在线一区二区三区 | 91女神在线 | 日韩 国产 欧美 | 欧美成人猛片aaaaaaa | 丁香花电影在线观看免费高清 | 人人爽人人香蕉 | 免费成年人视频在线观看 | 国产日韩欧美精品在线观看 | 成人一级影片 | 爆操91 | 亚洲av无码精品色午夜果冻不卡 | 友田真希一区二区 | 亚洲精品1234| 欧美黄色免费 | 貂蝉被到爽流白浆在线观看 | 成人黄色免费观看 | 娇小tube性极品娇小 | 亚洲国产日韩在线观看 | 91在线欧美 | 91精品国产高清一区二区三区蜜臀 | 韩国三级做爰高潮 | 蜜臀av性久久久久蜜臀aⅴ麻豆 | 欧美做爰猛烈床戏大尺度 | 人人干天天干 | 国产精品久久久久久久久毛片 | 久久国产人妻一区二区免色戒电影 | 裸体按摩www性xxxcom | 人人干人人模 | 成年丰满熟妇午夜免费视频 | 波多野结衣视频在线看 | 亚洲国产精品无码久久久久高潮 | 91精品国产综合久久香蕉922 | 成人在线观看av | 99亚洲天堂| 国产一二在线 | 尤物91| 成人激情综合网 | 国产学生美女无遮拦高潮视频 | 五月深爱婷婷 | 四虎国产| 黄色免费一级 | 国产精品久久久久久久一区二区 | 性生交大片免费看狂欲 | 国产女人18毛片水真多18 | 日本在线一区二区三区 | 国产一区二区女内射 | 日日噜噜夜夜狠狠久久丁香五月 | 日韩午夜精品视频 | 免费的黄色av | 日本性爱动漫 | 国产男女猛烈无遮挡免费视频动漫 | 97色在线| 狠狠躁狠狠躁视频专区 | 无码国产精品一区二区色情男同 | 在线观看免费国产视频 | 在办公室被c到呻吟的动态图 | 欧美性天堂 | 国产综合久久 | 欧美特黄视频 | 成人福利视频网站 | 成人精品视频一区 | 你懂的网址在线观看 | 九九色网站 | 狠狠操人人干 | 欧美一级在线 | 少妇免费看 | 免费一级特黄毛大片 | 久久久久国产一区二区三区 | 毛片一级免费 | 福利电影一区二区三区 | 欧美极品视频在线观看 | 久久久久久久影视 | 雪白的扔子视频大全在线观看 | xxx性视频| 波多野42部无码喷潮 | 91网入口 | 一级草逼片 | 中文在线а√在线 | 色一情一区二区三区四区 | 99精品视频一区二区 | www.youjizz.com在线| 精品人妻一区二区三区日产 | 国产porn | 99精品人妻少妇一区二区 | 国产精品亚洲第一 | 天天色棕合合合合合合合 | 国产99久久久国产精品 | 亚洲精品国产无码 | 精品无码在线视频 | 五月婷婷综合在线观看 | 午夜影院久久 | 色欲欲www成人网站 欧美人与禽猛交乱配视频 亚洲免费精品视频 | 超碰国产人人 | 女大学生的家政保姆初体验 | 秘密基地免费观看完整版中文 | 日韩中文在线播放 | 176精品免费 | 我会温柔一点的日剧 | 久久免费资源 | 婷婷亚洲视频 | 天天澡天天狠天天天做 | 久一视频在线 | 精品福利在线视频 | 高跟丝袜av | 国产精品成人网站 | 一本一道av无码中文字幕 | 欧美黑人精品一区二区不卡 | 日本精品一区二区视频 | 爱情岛论坛av | 亚洲国产毛片aaaaa无费看 | 久久福利视频导航 | 五月天激情综合 | 国产一区二区视频免费 | xxx69美国| 久久精品国产亚洲AV无码麻豆 | 色妞视频| 毛片视屏| 成人免费看片视频 | 欧美成人手机在线视频 | 国产精品亚洲天堂 | 老牛av一区二区 | 午夜8888| 亚洲蜜桃视频 | 伊人二区| 亚欧美色图 | 美女视频国产 | 精品人妻一区二区三区蜜桃视频 | 成人午夜精品 | 一级毛毛片 | 女人洗澡一级特黄毛片 | 日韩3区| 欧美日韩一区二区三区 | 精品国产九九 | 国产一级av毛片 | 亚洲福利精品视频 | 巨乳在线播放 | xfplay5566色资源网站 | 人妖一级片 | 337p粉嫩日本欧洲亚洲大胆 | 爆操少妇| 手机看片福利一区 | 99久久综合国产精品二区 | 黄色一区二区三区四区 | 国产精品探花一区二区三区 | 韩国一级淫片免费看 | 日韩精品一区二区三区久久 | 国产按摩一区二区三区 | 国产精品伦一区二区三区免费看 | 久久精品网址 | 国产精品老熟女一区二区 | 777视频在线观看 | 亚洲 成人 av | 蜜臀一区二区三区精品免费视频 | 亚洲成人av网址 | 精品国产不卡 | 久久这里只有 | 黄色av网站在线 | 免费看a级黄色片 | 亚洲综合在线一区 | 免费三级黄| 成人在线看片 | 国产精品高潮视频 | www中文在线 | 老司机av网站 | 日本不卡中文字幕 | 四季av在线一区二区三区 | 日韩精品久久久久久久 | 狠狠干2020 | 国产精品v日韩精品v在线观看 | 亚洲一区二区精品 | 波多野结衣高清在线 | 五月婷婷六月激情 | 少妇又色又紧又黄又刺激免费 | 亚洲欧美日韩综合一区二区 | 中文字幕成人一区 | 小视频成人 | 少妇肥臀大白屁股高清 | 强行侵犯视频在线观看 | 日韩一区二区在线播放 | 精一区二区 | 激情在线观看视频 | 色91在线| 图片区亚洲色图 | 在线观看91av | 欧美成人h版 | 久久午夜场 | 欧美三级特黄 | 国产一级做a | 精品熟妇视频一区二区三区 | 国产亚洲精品熟女国产成人 | 热热99| 男女涩涩 | 无码精品人妻一区二区三区影院 | 国产女人18水真多18精品一级做 | 欧美色图国产精品 | 久青草资源福利视频 | 国产美女作爱全过程免费视频 | 无码人妻精品一区二区三区蜜桃91 | 国产中出 | 色偷偷免费费视频在线 | 亚洲一区二区三区不卡视频 | 黄视频网站免费看 | 欧美综合一区 | 性一交一乱一伧国产女士spa | 嫩草影院国产 | 日本精品一区二区三区视频 | 精品毛片在线观看 | 美女扣逼喷水视频 | 国内精品一区二区 | 日本美女影院 | 特大黑人娇小亚洲女 | 午夜国产片 | 国产精品一卡二卡 | 奶水旺盛的少妇在线播放 | 四虎影院免费视频 | 成人免费观看视频大全 | 国产精品v欧美精品v日韩 | 五月天青青草 | 欧美日韩网址 | 精品无码久久久久久久久成人 | 91久久色| av资源免费看 | 欧美在线视频一区 | 欧美熟女一区二区 | 亚洲精品av中文字幕在线在线 | 日日草夜夜草 | 午夜激情视频在线观看 | 欧美专区在线 | 日本色妞 | av激情小说 | 欧美做爰猛烈床戏大尺度 | 激情五月av | 色狠狠一区二区三区香蕉 | 91亚洲精品久久久蜜桃网站 | 91视频在线看| 呦女精品| 日韩精品激情 | 欧美国产视频 | 成人欧美一区二区三区黑人免费 | 欧美性视频在线播放 | 国产精品成人久久久久久久 | 中文字幕免费中文 | 免费在线观看www | 国产又粗又猛又黄又爽 | 影音先锋中文字幕人妻 | 黄色片在线免费 | 精品中文字幕一区 | 干综合网 | 超污巨黄的小短文 | 国产精品.xx视频.xxtv | 曰批又黄又爽免费视频 | 蜜臀av性久久久久蜜臀aⅴ四虎 | 自拍偷拍色| 亚洲一二三精品 | 一区二区天堂 | 日色网站 | 久久久久久香蕉 | 老外黄色一级片 | 爱的天堂| 大肉大捧一进一出好爽视频动漫 | 自拍偷拍免费 | 欧美在线你懂的 | 一本加勒比hezyo黑人 | 成人福利院 | 少妇一级淫片免费视频 | 三级av| 精品国产亚洲一区二区麻豆 | 日韩xxx视频 | 开心激情久久 | 日本xxxx18 | 97视频在线观看免费高清完整版在线观看 | 后进极品美女白嫩翘臀 | 精品夜夜澡人妻无码av | 曰批免费视频播放免费 | 欧美精品国产一区二区 | 中文字幕av二区 | 欧美一级日韩一级 | 国产精品情侣 | 久久国产网站 | 欧美日韩国产免费一区二区三区 | 成人午夜免费福利视频 | 美女又爽又黄视频 | 午夜精品三级久久久有码 | 免费中文字幕日韩欧美 | 欧美性三级 | 免费无遮挡无码永久在线观看视频 | 久久久久久久久久久丰满 | 麻豆传媒在线视频 | 国产成人tv| 国产又黄又硬又粗 | 色综合久久久无码中文字幕波多 | 超碰免费在 | 欧美成人综合在线 | 一级黄色片在线观看 | 澳门黄色一级片 | 五月婷婷六月合 | 国产三级精品三级在线 | 久久久久亚洲日日精品 | 好男人视频www | 亚洲男同视频 | 亚洲国产aⅴ成人精品无吗 午夜国产一级 | 色播视频在线 | 黄色av播放 | 少妇又紧又深又湿又爽视频 | 国产清纯白嫩初高中在线观看性色 | 久久久国产亚洲 | 成人播放器| 在线观看av中文字幕 | www.久久久久久久久久 | 成人v| 午夜免费网 | 五月花成人网 | 青青草手机视频 | 熟妇人妻无乱码中文字幕真矢织江 | 一级丰满大乳hd高清 | 天天色综合影视 | jizz欧美 | 亚洲自拍天堂 | 久久在线免费视频 | 久久国产免费观看 | 热久久中文 | 久久精品专区 | 日日骚av一区二区 | 黄色国产网站 | 永久免费国产 | 欧美一级片在线看 | 日本国产亚洲 | 亚洲精品第二页 | 亚洲日本香蕉 | 亚洲视频一区二区三区在线观看 | 青青草原av在线 | 精品视频一区在线观看 | 九一亚洲精品 | 欧美激情影音先锋 | av在线最新 | 一区二区三区中文字幕在线观看 | 无码一区二区三区免费视频 | 色呦呦在线免费观看 | 久久香蕉网站 | 免费的黄色大片 | 国产伦精品一区二区三区视频孕妇 | 午夜高清视频 | 精品中文字幕在线播放 | 成人在线你懂的 | 国产精品高清在线观看 | 在线观看中文字幕一区二区 | 色偷偷久久 | 深爱五月激情五月 | 波多野结衣一本一道 | 免费黄色国产 | 亚洲一级特黄毛片 | 亚洲激情四射 | 新香蕉视频 | 高清不卡毛片 | 色噜av| 9l视频自拍九色9l视频 | 成人免费精品视频 | 激情一区二区三区 | 成人片在线免费看 | 久色视频在线观看 | 开心激情综合网 | 日本一区二区免费在线 | 欧美日韩网址 | 国产精品一区二区久久毛片 | 毛片动态图 | 在线观看日批视频 | 日韩少妇 | 国产成人自拍一区 | 91国产视频在线播放 | 亚洲精品在线视频免费观看 | 激情综合区 | 羞羞免费视频 | 少妇又紧又色 | 俺也去网站 | 蜜桃传媒一区二区亚洲av | 日韩一二三四 | 成人深夜电影 | 国产sm调教视频 | 成人三级在线播放 | 超91在线| 宅男噜噜噜66一区二区 | 高级家教课程在线观看 | 九九热在线视频免费观看 | 精品一区二区三区在线观看 | 亚洲av无码一区二区三区四区 | 久久午夜伦理 | 国产精品白丝喷水在线观看 | 日本欧美一区二区 | 日本一区二区三区免费视频 | 肉肉视频在线观看 | 色婷婷小说| 亚洲国产高清在线 | 超碰99热| 久久精品视频免费播放 | 国产九九九精品 | 国产精品视频一区二区三区不卡 | 免费看特级毛片 | 国产乱人伦 | 久久伊人影视 | 五月婷婷综合激情 | 日日噜噜噜夜夜爽爽狠狠视频97 | 在线操| avav国产| 国产黄在线播放 | 日韩av在线第一页 | 一本色道久久88加勒比—综合 | 一级片在线视频 | 久久国产黄色片 | 蜜乳av网站 | 蜜臀av无码一区二区三区 | 伊人365影院 | www成年人 | 日韩精品综合 | 亚洲国产91 | 性猛交xxxx乱大交3 | 日韩一级完整毛片 | 色婷婷综合网 | 97超碰人人看| a级黄色录像 | 秋霞网一区 | 久久大奶 | 韩国毛片一区二区三区 | 亚洲午夜在线视频 | 裸体美女免费视频网站 | 无码毛片aaa在线 | 小嫩嫩12欧美 | 性一交一黄一片 | 日本夫妻性生活视频 | 15—16女人毛片| 激情区| 精品国产91久久久久久 | 爱情岛论坛亚洲品质自拍 | 999视频在线播放 | 亚洲熟妇av乱码在线观看 | 依依成人在线视频 | 欧美精品videos | 久久久久久久久久综合 | 91麻豆国产在线观看 | 少妇按摩一区二区三区 | 精品久久久久久无码国产 | 欧美一区二区不卡视频 | 国产精品久久久国产盗摄 | 六十路息与子猛烈交尾 | 97国产| 一区二区三区在线看 | 欧美黄色一级大片 | 熟妇人妻精品一区二区三区视频 | 久久久久亚洲av成人网人人网站 | 最近免费高清mv | 国产av人人夜夜澡人人爽 | 陪读偷伦初尝小说 | 日韩精品影院 | 午夜视频在线免费观看 | 97毛片| 中国一级特黄录像播放 | 九九九久久久 | 日本大尺度做爰呻吟 | 中文字幕在线观看91 | 精品久久在线 | 亚洲最新av网站 | 成人精品一区二区三区 | 色www情| 91在线观| 制服丝袜一区二区三区 | 欧美亚洲中文精品字幕 | 亚洲国产综合视频 | 19韩国主播青草vip | 久久国产精品网站 | 秋霞视频在线 | 日韩电影一区二区 | 日韩精品亚洲精品 | 国产伦精品一区二区三区视频我 | 白浆影院 | 手机在线一区二区 | 亚洲国产精品国自产拍久久 | 一本大道伊人av久久综合 | 一出一进一爽一粗一大视频 | 999毛片| 欧美在线免费观看视频 | 国产1区二区 | 成人影片在线免费观看 | 成为性瘾网黄的yy对象后 | 911国产在线 | 五月天激情视频 | 国产又爽又黄免费视频 | 免费成人小视频 | 国产精品无码在线播放 | 亲女禁h啪啪宫交 | 精品中文字幕一区二区 | 国产成人精品影院 | 极品91| 播播开心激情网 | 国产区网址 | 超碰成人在线观看 | 久久艹久久 | 黄色高清网站 | 深夜在线观看 | 求av网站| 少妇专区| 国产精品成人一区 | 亚洲综合一二三 | 日本精品免费在线观看 | 日韩欧美高清在线视频 | 成人网免费看 | 精品在线免费播放 | 国产精品人人做人人爽 | gay男互凵gay男同偷精 | 五月激情丁香婷婷 | 国产成人精品免费看视频 | 日本人和亚洲人zjzjhd | 亚洲国产精品午夜久久久 | 黄色特级大片 | 精品白浆 | 国产特级av | 欧美在线观看一区 | 一区二区三区小视频 | 成人无码精品1区2区3区免费看 | 久久影视中文字幕 | 国产精品www色诱视频 | 日本天堂影院 | 国产高清无遮挡 | 欧美人妖另类 | 久久久欧美精品sm网站 | 日日夜夜中文字幕 | 亚洲超丰满肉感bbw 日韩欧美xxx | a级片免费在线观看 | 日本不卡免费 | 四虎视频在线 | 久久久国产精品一区 | 5级黄色片 | 欧美在线影院 | 欧美国产成人在线 | 免费色网址 | 少妇熟女视频一区二区三区 | 欧美啪啪一区 | av大片在线免费观看 | 就去干成人网 | 亚洲人人人 | 一区二三区 | 18禁男女爽爽爽午夜网站免费 | 韩国三级中文字幕hd浴缸戏 | 医生强烈淫药h调教小说视频 | 中日韩在线观看视频 | 免费男女乱淫真视频免费播放 | 婷婷色婷婷开心五月四房播播 | 亚洲精品视频在线观看免费 | 深夜免费福利视频 | 精品国产99一区二区乱码综合 | 欧美干干 | 亚洲综合视频在线 | 欧美一级在线免费 | 欧美视频在线不卡 | 高清一区二区 | wwxx日本| 亚洲视频免费看 | 国产伦精品一区二区三区免费 | 黄a毛片| 97色婷婷 | 中文字幕日韩精品一区 | japanese强行粗暴 | 国产成人综合欧美精品久久 | 久久精品在线播放 | 成人网在线 | 黄黄的网站 | 久久久久久蜜桃一区二区 | 国产精品视频999 | www.精品一区 | 日韩成人在线免费观看 | 日本女人一区二区三区 | 精品国产av鲁一鲁一区 | 免费观看成人在线视频 | 久久久亚洲精品视频 | 怡红院一区二区 | 色播视频在线播放 | 好男人在线视频www 亚洲最新偷拍 | 欧美aaa在线观看 | 乱人伦中文字幕 | 亚洲高清免费 | 老司机深夜福利网站 | 久久激情免费视频 | xxxwww黄色| 国产a网 | 在线观看精品 | 粉嫩av四季av绯色av | 亚洲女同视频 | 在线免费观看 | 女人高潮娇喘声mp3 两根大肉大捧一进一出好爽视频 | 色呦网站| 欧美老熟妇一区二区三区 | 亚欧洲精品视频在线观看 | 美女光屁屁露胸胸 | 日韩精品免费电影 | 黄站在线观看 | 青草国产| 国产精品免费一区二区三区都可以 | 精品123区| 裸体裸乳被免费看视频 | 长河落日电视连续剧免费观看 | 成人理论影院 | 天天爽天天爽夜夜爽毛片 | 欧美精品久久久久久久久 | 亚洲免费网站在线观看 | 一区二区三区日韩 | 欧美福利网站 | 亚洲综合色小说 | 亚洲97 | 日本黄色片在线播放 | 欧美一级爱爱视频 | 色一情一交一乱一区二区三区 | 饥渴少妇勾引水电工av | 男人的亚洲天堂 | 国产成人在线网站 | 欧美日韩精品 | 人妻aⅴ无码一区二区三区 精品无码m3u8在线观看 | 黄色av网站网址 | 国产午夜三级一区二区三 | 高清免费视频日本 | 亚洲AV无码精品色 | 91se在线 | 激情视频免费在线观看 | 网站在线免费观看 | av播播 | 天天搞夜夜爽 | 色呦呦精品| 在线观看理论片 | 亚洲毛片一级 | 国产三级小视频 | 美女av片 | 中文字幕日韩精品一区 | 91香蕉视频黄 | 国产21区 | a√在线观看| 涩涩在线播放 | 久草精品视频在线观看 | 免费在线观看黄色片 | 图片区小说区视频区 | 国产丝袜视频在线 | 老司机深夜网站 | 国产第一页屁屁影院 | 91传媒在线视频 | 国产草草影院ccyycom | 日韩网站在线 | 午夜精品久久久内射近拍高清 | 色无极影院亚洲 | 欧美视频一二区 | 波多野结衣视频免费看 | 91欧美精品 | 国产天堂 | 在线免费观看亚洲 | jizz免费视频| 美女无遮挡网站 | 婷婷国产一区 | 99热只有| 自拍偷拍视频网 | 欧美一二三区视频 | 日本高清视频在线播放 | 久久久久麻豆v国产精华液好用吗 | 伊人福利在线 | 国产亚洲精品久久久久久青梅 | 天堂网8| 欧美成人r级一区二区三区 加勒比在线免费视频 | 国内自拍视频在线播放 | 伊人精品在线视频 | 国产男女av| 成人午夜毛片 | 日韩高清精品免费观看 | 天天操综合网 | 中出在线观看 | 色人阁视频 | 理论片av | 精品视频一区二区三区 | 日韩精品视频在线播放 | 天天干天天操天天舔 | 久久久精品影院 | 成人免费午夜 | 免费午夜视频 | 中文字幕在线观看91 | 亚洲痴女| 午夜天堂精品 | 国产wwwwww | 撸啊撸在线视频 | 69人妻精品久久无人专区 | 日韩欧美综合一区 | youjizz.com日本| 手机在线观看毛片 | 玖玖999| 三上悠亚中文字幕在线播放 | 中文字幕一区二区三区乱码在线 | 青青草视频在线观看免费 | 天天摸天天插 | 国产成人自拍视频在线 | 一边摸一边抽搐一进一出视频 | 黄色片hd| 日本色综合网 | 毛片资源 | 国产精品一品二品 | 久久久人妻无码一区二区 | 色乱码一区二区三区网站 | www久久久久久久 | 牛人盗摄一区二区三区视频 | 成人αv | 国产黄a三级三级三级看三级男男 | 国产精品老熟女视频一区二区 | 无码人妻丰满熟妇精品区 | 亚洲AV成人无码网站天堂久久 | 91在线免费观看网站 | 日韩精品一区二区在线视频 | 亚洲美女色视频 | 毛片网站有哪些 | 在线观看av国产一区二区 | 一卡二卡三卡视频 | caobi视频 | 麻豆国产一区 | 亚洲系列中文字幕 | 东北少妇露脸无套对白 | 已满18岁免费观看电视连续剧 | 日本亲近相奷中文字幕 | 成人在线小视频 | 无码精品人妻一区二区三区漫画 | 久热免费在线 | 三年中文免费观看大全动漫 | 天堂资源在线观看 | 九热视频在线观看 | 亚洲成人欧美 | av天堂一区| 少妇扒开粉嫩小泬视频 | 中文字幕在线视频不卡 | 男人午夜网站 | 热@国产 | 国产夫绿帽单男3p精品视频 | 久一视频在线观看 | 欧美日韩国产在线一区 | 日韩av看片 | 欧美午夜精品一区二区 | 亚洲精品乱码久久久久久蜜桃动漫 | 法国经典free性复古xxxx | www.日韩在线 | 午夜精品一区二区三区在线视频 | 久久人人爽人人爽人人片 | 国产精品免费精品一区 | 丁香花激情网 | 亚洲在线免费观看 | 国产99久久久欧美黑人 | 日韩中文字幕精品视频 | 激情无遮挡 | 国产一区二区三区三州 | 亚洲午夜18毛片在线看 | 欧美性生交xxxxx久久久 | 国产精久久久 | 国产字幕侵犯亲女 | 777精品伊人久久久久大香线蕉 | 加勒比综合 | 亚洲第一页视频 | 毛片h | 亚洲一区二区在线观看视频 | 极品超粉嫩尤物69xx | 精品肉丝脚一区二区三区 | 国产精品久免费的黄网站 | 蜜桃一二三区 | 五月综合在线 | 日韩黄| 午夜在线观看视频网站 | 脱女学生小内内摸了高潮 | 国产www在线观看 | 小视频在线观看 | 亚洲国产91 | 久久免费看少妇高潮v片特黄 | 美女被艹视频网站 | 成人国产精品入口免费视频 | 特级毛片www | 国产午夜激情视频 | 天天色影网 | 国产婷婷色| 一本色道av | 亚洲啊啊啊啊啊 | 色窝窝综合色窝窝久久 | 蜜桃臀av一区二区三区 | 国产成人免费 | 久久久久久1 | 精品国内自产拍在线观看视频 | 免费中文字幕在线观看 | 国产成人三级 | 天美麻花果冻视频大全英文版 | 国产欧美日本 | 免费在线观看黄网 | 天天插天天插 | av综合色 | 久久精国产 | 91av视频网站| 6080午夜伦理| 九色porny自拍视频在线播放 | 美攻壮受大胸奶汁(高h) | 国产精品白嫩极品美女视频 | 成人啪啪18免费游戏链接 | www.av在线播放 | www日日日 | 91重口味 | 欧美四虎| 波多野结衣丝袜 | 中文写幕一区二区三区免费观成熟 | 亚洲香蕉在线视频 | 国产一伦一伦一伦 | 天天干天天操天天爽 | 欧美乱做爰xxxⅹ久久久 | 琪琪色综合网 | 久久久久久久久久久免费 | 五月av | 久久99日| 12av在线 | 欧美性生活在线视频 | 久久综合精品国产二区无码不卡 | 国自产拍偷拍精品啪啪一区二区 | 日韩avxxx | 国产特级黄色录像 | 天堂av一区| 久久精品国产亚洲av麻豆色欲 | 91免费国产在线观看 | 九九国产| 青青草视频在线观看 | 精品夜夜澡人妻无码av | 四虎国产成人永久精品免费 | 91嫩草精品 | 日本高清视频免费看 | 3o一40一50一6o女人毛片 | 国产精品视频一二区 | 九九免费在线视频 | 久久久精品小视频 | 草莓视频成人在线 | 成人一级毛片 | 深夜福利一区 | 人妻 丝袜美腿 中文字幕 | 福利片第一页 | 最好看的mv中文字幕国语电影 | 向着小小的花蕾绽放 | 中国免费一级片 | 国产成年网站 | 黄瓜视频污在线观看 | 草逼网站 | 污视频在线播放 | 黄色.com| 国产乱码精品一区二区三区忘忧草 | 一区二区国产视频 | 精品视频在线观看一区 | 99人妻碰碰碰久久久久禁片 | 四季av一区二区夜夜嗨 | 午夜av激情 | 岛国精品一区二区三区 | 久操色 | 老司机精品福利导航 | 在线视频观看一区二区 | 亚洲久久在线观看 | 99伊人网| 国产三级在线免费观看 | 日本激情一区二区三区 | av一区在线播放 | www.avcao| 亚洲成人黄色在线观看 | 解开乳罩喂领导吃奶 | 欧美激情免费在线观看 | 亚洲综合日韩精品欧美综合区 | 91久久色 | 波多野结衣1区2区3区 | 性欧美在线视频观看 | 亚洲图片另类小说 | 亚洲人一区二区三区 | 天降女子在线 | 嫩草影院久久 | 麻豆av免费观看 | 亚洲精品久久久久久无码色欲四季 | 婷婷爱五月天 | 亚洲香蕉网站 | 久久久亚洲 | 久久黄色一级 | 亚洲欧美精品在线观看 | 成人深夜视频 | 日韩亚洲影院 | 成人av电影免费观看 | 欧美综合激情 | 91涩涩涩| 日韩av看片 | 边啃奶头边躁狠狠躁 | 亚洲a成人 | 亚洲福利视频一区二区 | 成人免费福利 | 国产精品不卡一区二区三区 | 老司机深夜福利影院 | 亚洲精品视频一区二区 | 亚洲精品成 | 国产女人18毛片水18精品 | 青青操视频在线观看 | 国产精品无码内射 | 性欧美激情 | 国产精品美女av | 日韩一级片免费 | 国产一区二区三区观看 | 女人久久 | 亚洲av无码一区二区乱子伦 | 日韩久久久久 | 国产精品久久久久久网站 | 久久久久亚洲av无码专区 | 第一福利在线视频 | 伊人影视在线 | 5566毛片| 亚洲精品亚洲 | 日韩高清影视在线观看 | 午夜三级在线 | xxxxx在线视频| 午夜免费福利小电影 | 国产精品秘 | 中文字幕亚洲高清 | 99riav国产在线观看 | 亚洲a在线观看 | 国产三级在线观看 | 91理论片午午伦夜理片久久 | 日本欧美色图 | 国产情侣自拍一区 | 国产精品一区二区小说 | 天天操夜夜操狠狠操 | 国产第一页视频 | 成人亚洲精品 | 妺妺窝人体色www在线下载 | 亚洲图片综合网 | 国产无码精品视频 | 欧美又大粗又爽又黄大片视频 | 国产手机av | jizz免费视频| 亚洲影院一区 | 96超碰在线 | 国产永久在线 | 二级毛片 | 中文字幕人妻一区二区在线视频 | 国产成人精品综合久久久久99 | 欧美高大丰满少妇xxxx | 久久精品国产亚洲av成人 | 性色欲网站人妻丰满中文久久不卡 | 大香蕉视频一区二区 | 国产哺乳奶水91在线播放 | 亚洲精品高清在线观看 | bbbbbbbbb毛片大片按摩 | 亚洲免费一区二区 | 日韩精品一区二区三区中文在线 | 6080午夜| 红色假期黑色婚礼2 | 国产精品日日夜夜 | 日韩午夜视频在线 | 91嫩草入口| 福利视频在线免费观看 | 日韩操操 | 黄色三级三级三级三级 | 最新中文字幕视频 | av无限看| 精品一区二区三区视频日产 | 国产乱大交 | 日本精品视频一区二区三区 | 锕锕锕锕锕锕锕锕 | 台湾三级伦理片 | 无码精品一区二区三区在线播放 | 亚洲精品乱码久久久久久麻豆不卡 | 特大黑人巨人吊xxxx | 日韩天天操 | 日少妇的逼 | 黄色aa网站 | 亚洲无码久久久久 | 亚洲一区二区高清视频 | 国产成人啪一区二区 | 337p粉嫩色噜噜噜大肥臀 | 久久精品噜噜噜成人88aⅴ | 吸咬奶头狂揉60分钟视频 | 亚洲精品成a人在线观看 | 国产一区,二区 | 日韩精品啪啪 | 黑人操bb| jizz毛片 | 伊人久久大香 | 午夜一区在线观看 | 极品蜜桃臀肥臀-x88av | 亚洲综合资源 | 亚洲性猛交富婆 | 毛片在线观看视频 | 天天色视频 | 成人一区二区免费视频 | 男人天堂国产 | a天堂中文字幕 | 日本不卡在线观看 | 午夜99| 亚洲一区二区三区综合 | 国产午夜精品一区二区理论影院 | 窝窝在线视频 | 久久这里只有精品9 | 天天干天天舔天天操 | 和漂亮岳做爰3中文字幕 | 国产精品爽爽久久久久久 | 欧美一级片免费在线观看 | 一级片视频免费看 | 日本无遮挡边做边爱边摸 | 日日射av | 成年人黄色免费视频 | 久艹伊人| 自拍视频在线 | 少妇高潮一区二区三区99 | 可以免费看的av | 午夜国产精品视频 | 精品国产aⅴ一区二区三区东京热 | av资源在线免费观看 | 夜夜骑天天操 | 精品一区二区三区免费视频 | 日韩91视频 | 97超碰超碰 | 国产av无毛 | 另类第一页 | 神马午夜888 | 久久久久久蜜桃一区二区 | 18禁免费无码无遮挡不卡网站 | 久久成人亚洲 | 88国产精品视频一区二区三区 | 91亚洲网 | 中文字幕欧美在线观看 | 国产黄色片免费观看 | 三级色视频 | 国产日韩二区 | 欧美日韩亚洲二区 | 毛片在线视频观看 | 国产ts三人妖大战直男 | www.成人免费 | 日韩一区二区a片免费观看 久久久久久无码精品人妻一区二区 | 九九视频免费看 | 亚洲www在线| 国产一区二区久久精品 | 日韩一级片免费观看 | 噜噜噜久久久 | 女人张开双腿让男人捅 | 草草视频在线免费观看 | 日韩国产一区 | 亚洲欧美一区二区三区久久 | 在线观看日批视频 | 中文在线www| 久久精品一二三 | 天天射天天干天天操 | 成人拍拍视频 | 久久国产精品无码一级毛片 | 无码国产精品一区二区免费式直播 | 久人人| 欧美女优在线观看 | 性开放网站 | 国产精品夜色一区二区三区 | 乌克兰av在线 | 中文字幕av在线免费 | 日本精品影院 | 日本三级韩国三级美三级91 | 亚洲青涩 | 亚洲精品白浆高清久久久久久 | 美国三级a三级18 | 欧美三级韩国三级日本三斤在线观看 | 久久综合狠狠综合久久综合88 | 成人在线观看小视频 | 一区二区三区 中文字幕 | 6996电视影片免费看 | 日韩亚洲欧美一区 | 人妻在线一区二区 | 亚洲国产精品久久久久爰色欲 | 欧美黑人狂野猛交老妇 | 天天爽天天爽 | 天天婷婷 | 国产视频资源 | 麻豆精品国产传媒 | 色黄视频网站 | 国产精品自拍小视频 | 葵司有码中文字幕二三区 | 美女被娇喘流出白 | 精品久久久精品 | 精品久久久免费 | 精品无码久久久久成人漫画 | 国产欧美日韩视频 | 国产91丝袜在线观看 | 男女无遮挡免费视频 | 中文字幕一区二区在线观看视频 | 久久夜精| 色噜噜网站 | 少妇太紧太爽又黄又硬又爽小说 | 杨幂一区二区国产精品 | 国产精品久久久久久久久久辛辛 | 91成人高清 | 蜜桃久久久久 | 成人做爰www免费看视频网站 | 国产日韩在线播放 | 日韩视频中文字幕在线观看 | 国产91清纯白嫩初高中在线观看 | 精品国产视频 | 99久久夜色精品国产亚洲 | 尤物视频在线观看国产性感 | 久久不卡视频 | 韩日产理伦片在线观看 | 欧美一区二区三区激情啪啪 | 奇米影视一区二区 | 欧美国产日韩一区二区 | 91射 | 国产精品一区二区免费看 | 懂色av一区 | 天天舔天天操 | 中文免费av | 亚欧成人精品 | www.猫咪av | 天天色成人 | 国产视频一 | 亚洲视频在线免费观看 | 免费一区二区在线观看 | av在线影片 | 免费黄色在线播放 | 99在线视频播放 | 国产四区视频 | 亚洲精品一区二区在线 | 人人人超碰 | 国产免费av片在线观看 | 黄色在线免费观看网站 | 国产三级影院 | 91黄址 | 亚州av| 国产91综合一区在线观看 | 日韩av电影手机在线观看 | 亚洲人成在线免费观看 | 怡红院一区二区三区 | 免费福利影院 | 亚洲日本香蕉 | 秋霞av网| 少妇脚交调教玩男人的视频 | 日韩欧美资源 | 男人桶女人桶爽30分钟 | 在线观看视频一区二区 | 黄色网在线免费观看 | 久久久久一区二区 | 九一亚色 | 天堂av2019| 欧美日韩国产传媒 | 麻豆免费下载 | 91久久久久| 台湾综合色 | 我要色综合天天 | 91亚洲国产成人精品一区 | 欧美污视频在线观看 | 中文字幕av免费在线观看 | 日韩精品久久久久久久电影99爱 | www久久久com | 全部孕妇毛片丰满孕妇孕交 | 中文字幕33页 | 欧美视频在线观看视频 | 北条麻妃久久 | 午夜精品影院 | 老熟妇一区二区三区啪啪 | 亚洲无码精品在线观看 | 亚洲精品成人在线 | 亚洲精品一区二区三区不卡 | 无码精品黑人一区二区三区 | 涩涩视频在线免费看 | 精品久久无码视频 | 香蕉啪啪网| 黄色激情小说视频 | 久久久久久穴 | 精品成人无码久久久久久 | www.久久色 | 色猫咪av在线| 午夜精品福利在线 | 体内精69xxxxx | 黄色福利片 | 天天综合天天添夜夜添狠狠添 | 深爱激情综合 | 精品久久久久久国产 | 精品一级少妇久久久久久久 | 九九热中文字幕 | 国产伦理片在线观看 | 伊人av影院 | 亚洲国产专区 | 国精产品乱码一区一区三区四区 | 日本电影一区二区三区 | 无码人妻精品一区二区 | 在线观看日本一区 | 日韩三级一区二区三区 | 香蕉在线播放 | 日批视频免费 | 免费av电影网址 | 亚洲图片在线观看 | 免费的性爱视频 | 在线免费观看毛片 | 中文有码在线播放 | 91亚洲一区二区三区 | 国产在线超碰 | 久久久久999 | 性欧美69| 一本一道av无码中文字幕 | 一区二区三区四区精品 | 午夜影院免费视频 | 午夜亚洲国产 | 国产1区2区3区4区 | 三级在线观看网站 | 国产奶头好大揉着好爽视频 | 国产肉丝在线 | 国产一区二区欧美 | 91福利在线导航 | 精品国产乱码久久 | 中文字幕精品一区二区三区视频 | 韩国91视频 | 黄色大片aa| 日韩激情第一页 | 在线看毛片网站 | 欧美一区二区三区电影 | 人与拘一级a毛片 | 欧美天天爽 | 视频在线91 | 女同视频网站 | 自拍超碰在线 | 99久久人妻无码精品系列 | 久久国产剧情 | 欧美黄色高清视频 | 日本国产在线 | 伊人春色网 | 日本大尺度激情做爰hd | www.日韩精品 | 午夜男人天堂 | 成人在线不卡视频 | 亚洲综合激情五月久久 | 国产私拍 | 欧美丰满艳妇bbwbbw | 亚洲视频在线一区二区 | 日韩一级视频在线观看 | 国产视频在线免费观看 | 欧美日韩精品在线播放 | 老司机深夜福利网站 | 久久婷婷国产麻豆91天堂 | 欧洲精品一区二区三区久久 | 欧美 | 色多多污污 | 国产精品久久久久久久av福利 | 美女啪啪动态图 | 狠狠干女人| 亚洲视频在线免费播放 | 一级黄色毛毛片 | 久一视频在线观看 | 国产精品久久麻豆 | 麻豆国产精品777777在线 | 日韩免费高清一区二区 | 亚洲男人天堂2020 | 亚洲视频123 | 中文在线а√在线 | 日韩午夜片 | 国产精品手机在线 | 黄色a站| 人妻妺妺窝人体色www聚色窝 | 狠狠久久 | 欧美一区二区视频免费观看 | 久草超碰 | 亚洲第一区视频 | 国产伦一区二区三区 | 一区成人 | 国产精品黄色大片 | 欧美日比视频 | 午夜香蕉网 | 久久精品这里有 | 综合婷婷久久 | 美女福利在线视频 | 人人插人人搞 | 高清视频一区 | 亚洲黄a | 久久久激情视频 | 欧美一级射 | 国产精品爽爽久久 | 免费观看的av网站 | 一二级毛片 | 蜜臀久久99精品久久久 | 蜜桃av一区二区三区 | 欧美野外猛男的大粗鳮 | 波多野结衣丝袜 | 亚洲天堂av中文字幕 | 色女生影院 | 天堂在线精品视频 | 国产精品久久久久久久免费大片 | 少妇丰满尤物大尺度写真 | 精品国产伦一区二区三区免费 | 亚洲午夜福利一区二区三区 | 亚洲国产精品成人无久久精品 | 国产尤物网站 | 日本成人片网站 | 超碰导航 | 小sao货水好多真紧h无码视频 | www.日日 | 国产亚洲av在线 | 清冷学长被爆c躁到高潮失禁 | 香蕉久久久 | 免费欧美一级 | 亚洲精品不卡 | 欧美三级黄 | 又大又粗弄得我出好多水 | 91精品国自产在线观看 | 一区二区三区在线播放视频 | 在线不卡视频 | 亚洲国产精品成人 | 和漂亮岳做爰3中文字幕 | 国产精品一区二区在线 | 人人看人人看 | 精品无码久久久久久久 | 黄网站免费入口 | 国产一级特黄毛片 | 日本在线色 | 97精品国产97久久久久久免费 | 有码中文字幕 | 国产又黄又猛又粗又爽 | 一级特黄免费视频 | 黄色三级三级 | 娇妻被肉到高潮流白浆 | 免费网站看av | 国产精品一品二区三区的使用体验 | 91动态图| 亚洲欧美国产毛片在线 | 中文字幕欧美在线 | 午夜看片福利 | 国产精品二区一区 | 午夜视频1000 | 久久黄色一级视频 | 国产麻豆成人精品av | 欧洲自拍一区 | 久久思| 一个色的综合 | 久久艹影院 | 国产一区二区三区在线免费观看 | 丁香花电影免费播放电影 | 亚洲视频456 | 日韩欧美亚洲国产 | 日韩不卡高清 | 欧美七区 | www狠狠 | 久久99久久99精品蜜柚传媒 | 中文字幕电影一区 | 天天碰天天| 国产911| 久久免费高清视频 | 久久艹综合| av中文字幕第一页 | 女人免费视频 | 理论片av | 色av综合网 | 99久久精品免费看 | 天天干夜夜爽 | 成人av网站在线播放 | 91久久爽久久爽爽久久片 | 精品视频一二区 | 欧美特黄aaaaaa | 影音先锋在线中文字幕 | 天堂在线观看视频 | 亚洲污视频 | 91新网站 | 国产福利视频一区 | 成人福利在线观看 | 日韩视频久久 | 亚洲精品乱码久久久久久国产主播 | ass日本粉嫩pics珍品 | www.av777| 天天色天天射天天干 | 中文字幕黑人 | 亚洲资源在线播放 | 国产婷| 国产人妖一区二区 | jizz色 | 亚洲精品一区二区三区影院忠贞 | 久在线视频 | 国产精品久久久久久久久免费软件 | 深夜成人在线观看 | 亚洲字幕成人中文在线观看 | 一极毛片| 国产精品又黄又爽又色无遮挡 | 天天综合网国产 | 国产微拍精品一区 | 天天爱综合网 | 中文有码在线 | 欧美日韩精品久久久 | 亚洲 激情| 日韩一区二区三区视频 | 国产精品日本 | 波多野结衣之双调教hd | 51成人做爰www免费看网站 | 毛片全黄| 成人综合av | 久久在线精品视频 | 中文字幕免费视频观看 | 凹凸日日摸日日碰夜夜 | 蜜桃色一区二区三区 | 精品人妻无码专区视频 | 久久精品视频中文字幕 | 国产成人av一区 | 年下总裁被打光屁股sp | 日韩av高清无码 | 日韩精品自拍 | 美女网站免费视频 | 欧美精品一区在线发布 | 色妞色视频一区二区三区四区 | 成人午夜一区二区 | 国产一级片免费在线观看 | 免费看成年人视频 | 天天干国产 | 丰满双乳秘书被老板狂揉捏 | 秋霞自拍 | 免费看成年人视频 | 99在线免费观看 | 蜜臀麻豆 | 极品人妻一区二区三区 | 在线免费毛片 | 黄色av网站免费看 | 日本熟妇一区二区 | 香蕉一级片 | a视频在线看 | 内射毛片内射国产夫妻 | 天天做夜夜爽 | 办公室大战高跟丝袜秘书经理ol | 美女性高潮视频 | 茄子av | 免费观看视频一区二区 | 天天干夜夜 | 国产精品对白 | 久久久不卡国产精品一区二区 | 激情av小说| 911福利视频 | 大尺度舌吻呻吟声 | 国产小视频一区 | 欧美日韩人妻精品一区二区三区 | 久久伊人av| 超碰97国产精品人人cao | 国产成人a∨ | 成人性视频在线 | 女人叉开腿让男人桶 | 国产精品一区二区三区免费视频 | www视频免费观看 | 中文字幕在线字幕中文 | 波多野结衣一区二区三区高清av | 99久久这里只有精品 | 美女av免费看 | 色吧av| 久久99精品久久久久久噜噜 | jizz韩国| 亚洲AV无码成人精品区东京热 | 手机成人在线视频 | 天天舔日日操 | 不卡av网 | 国产激情av一区二区三区 | 中文无码日韩欧 | www.色人阁.com| 成都免费高清电影 | 久久午夜鲁丝 | 日韩久久久久久久久 | 色大师av一区二区三区 | 激情啪啪网 | 999福利视频| 亚洲aa| 天天射天天射天天射 | 一道本av | 日韩视频一区二区三区 | 久草视频免费 | 中文字幕第页 | 三级中文字幕 | jizz欧美大片 | 夜夜噜噜噜 | 成人性生活免费视频 | 亚洲一区在线视频 | 手机av在线免费 | 免费麻豆国产一区二区三区四区 | www.蜜桃av.com | 国产一区二区三区自拍 | 超碰精品在线 | 亚洲二区av | 激情六月色 | 啪啪免费网址 | 很黄很污的视频网站 | 国产精品乱码一区二区三区 | 国产精品一区二三区 | 夜夜狠狠擅视频 | 波多野结衣在线视频免费观看 | 欧美日韩中文字幕在线视频 | 欧洲综合视频 | 麻豆av片 | 日本在线视频不卡 | 精品无码av在线 | 久久精品无码Av中文字幕 | 韩国精品一区二区 | 成人黄色网址在线观看 | 欧洲色综合| caoporm超碰| 中文字幕+乱码+中文乱码www | 2024国产精品 | 日本视频在线免费 | 激情久久久久久 | 成人av一区二区三区在线观看 | www麻豆视频 | 色777| 日本激情一区二区 | 亚洲国产网址 | 日本视频在线观看免费 | 久青草国产在线 | 日本午夜精品理论片a级app发布 | 操操操网站| 草久久久久久 | 日本视频不卡 | 在线你懂的视频 | 国产成人久久精品流白浆 | 成人久色| 亚洲调教| 欧洲精品久久久久毛片完整版 | 色呦呦在线 | 黑人干亚洲女 | 91麻豆视频在线观看 | 台湾男男gay做爽爽的视频 | 国产毛片在线看 | 中文字幕一区二区免费 | 婷婷色亚洲 | 四虎一级片 | 亚洲一区二区三区黄色 | 日韩精品极品 | 97视频一区二区 | 国产女人和拘做受视频免费 | 在线免费观看亚洲视频 | 免费毛片基地 | av在线免费观看一区 | 成人免费看片'在线观看 | 99这里精品 | 成人av综合 | 丝袜一区二区三区四区 | 一区二区在线视频 | 韩国短剧在线观看 | 伊人伊色 | 黄色中文字幕在线观看 | 蜜桃一区二区 | 中文在线最新版天堂8 | 国产精品成人久久电影 | 污污动态图| 国产性久久 | 免费无码一区二区三区 | 茄子视频懂你更多在线观看 | 成人三级影院 | 诱夫1v1高h| 黄色三级三级三级三级 | 国产精品久久AV无码 | 日韩成人免费电影 | 国产又粗又猛又爽又黄无遮挡 | 爆乳熟妇一区二区三区 | 夜夜夜网站 | 潘金莲一级淫片免费放动漫 | 免费三片在线播放 | 精品国产传媒 | 中文字幕电影一区 | 蜜桃视频导航 | 免费又黄又爽又猛大片午夜 | 免费黄色网址视频 | 日本ww色| 黄瓜视频成人 | 九一毛片| av福利在线播放 | www.伊人久久 | avtt男人天堂| av毛片基地 | 瑟瑟网站在线观看 | 嫩草伊人久久精品少妇av | 女优一区| 69久人妻无码精品一区 | 中文字幕永久视频 | 极品销魂美女一区二区 | 欧美专区第二页 | 国产精品无码中文 | 国产成人在线电影 | 欧美大喷水吹潮合集在线观看 | 国产高清在线免费观看 | 91免费精品视频 | 久久国产精品影视 | 好男人.www| 国产又粗又猛又爽又黄91 | 日本91av| 香蕉视频99 | 制服.丝袜.亚洲.中文.综合懂 | 这里只有久久精品 | 婷婷影院在线观看 | 精品熟女一区二区三区 | 成人免费黄色av | 美日韩在线 | 99久久久无码国产精品免费 | 欧美日韩观看 | 色中文在线 | 性做久久久久久免费观看 | 欧美日韩一区二区在线视频 | 欧美黄色性视频 | 日韩精品视频一区二区三区 | 91肉色超薄丝袜脚交一区二区 | 噜噜噜噜私人影院 | 亚洲欧美网 | 精品乱子伦 | 中文字幕乱码中文乱码b站 91啪在线观看 | 日日天天| 超碰666| 91九色成人| 看av的网址 | 国产欧美日 | 亚洲午夜福利一区二区三区 | fc2成人免费视频 | 亚洲免费看片 | 美女综合网 | 久久无码视频网站 | 精品久久国产字幕高潮 | 欧美日韩一区二区三区视频 | 欧美jizzhd精品欧美18 | 少妇特黄a一区二区三区 | 丰满大乳奶做爰ⅹxx视频 | 国产乱论 | 91精品专区 | 亚洲视频手机在线 | 毛片999 | 丰满少妇高潮一区二区 | 美女黄免费| 亚洲国产成人va在线观看天堂 | 福利网站在线 | 99热一区二区 | 男人影院在线观看 | 欧美一区二区激情视频 | 精精国产 | 奇米影视一区二区 | 九色蝌蚪9l视频蝌蚪9l视频 | 奴色虐av一区二区三区 | 天天看视频 | 免费的黄色的视频 | 久久久久久逼 | 亚洲AV无码乱码国产精品色欲 | 国产a级淫片 | 欧美激情一区二区三级高清视频 | 亚洲视频一 | 99riav国产| 男人的天堂色 | 91视频黄色 | 男生尿隔着内裤呲出来视频 | 中文字幕在线免费观看视频 | 国产精品免费一区二区三区在线观看 | 在线免费观看黄网 | 久久久久夜夜夜精品国产 | 欧美黄色视屏 | 日日操夜夜摸 | 黄色应用在线观看 | 久久不射影院 | 裸体裸乳被免费看视频 | av日韩一区二区 | 在线观看成人av | 婷婷激情综合网 | 久久久久久99精品久久久 | 黑人干亚洲人 | 桃色在线观看 | 成年人av在线 | 善良的少妇伦理bd中字 | 二区三区在线视频 | 欧美成人小视频 | 亚洲自拍偷拍欧美 | 美女的胸给男人玩视频 | 日韩视频h| 欧美激情一区二区三区蜜桃视频 | 亚洲久久久久久久 | 欧美性色网站 | 又大又粗弄得我出好多水 | 久久精品—区二区三区舞蹈 | 成人激情片| www.精品在线 | 亚洲裸体视频 | 成人福利视频网 | 蜜桃av噜噜 | 中文字幕在线影院 | 葵司在线视频 | 日韩视频一区在线 | 97成人精品视频在线观看 | 韩国一区视频 | 韩国三级中文字幕hd浴缸戏 | 亚洲视频一区二区三区四区 | 亚洲网站免费观看 | 国产高清免费在线播放 | 精品国产一区二区三区久久 | 欧美69囗交视频 | 毛片福利视频 | 亚洲第七页 | 国产亚洲精品一区二区三区 | 污污的网站在线免费观看 | 国产福利第一页 | 一区二区三区中文字幕 | 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 不卡网av| 91欧美激情一区二区三区 | 日韩精品一区在线视频 | 国产日产欧美一区二区三区 | 亚洲精品国产精品国自产观看 | caoporn免费在线视频 | 777在线视频 | 久久性av | 久久精品在线观看 | 国产一级免费观看 | 男操女视频在线观看 | 一级片在线免费观看 | 国产在线视频一区二区 | 色多多视频在线观看 | 樱空桃在线观看 | 国产精品毛片在线 | 6080电视影片在线观看 | 亚洲国产小视频 | 91黄色片| 国产不卡在线播放 | 亚洲精品lv | 天天插综合网 | 91se在线 | 男生吃小头头的视频 | 黄色工厂这里只有精品 | 中文字幕在线观看欧美 | 日韩一区二区视频在线 | 亚洲精品一区二区三区精华液 | 欧美三日本三级少妇三级99观看视频 | 精品人妻久久久久久888不卡 | 美国一级特黄 | 91捆绑91紧缚调教91 | 午夜性色 | 亚洲精品综合久久 | 福利一二三区 | 亚洲av无码一区二区三区人妖 | 免费看黄色小视频 | 国产三级理论 | 久久影院国产 | 亚洲国产精品成人无久久精品 | 中文字幕视频一区二区 | 麻豆传媒网址 | 欧美熟妇精品久久久久久 | 成年在线视频 | 国产精品视频一二区 | 在线播放黄色网址 | v片在线看 | 久久久精选 | 男女做爰猛烈吃奶啪啪喷水网站 | 奇米网7777 | 超碰99在线| 中文字幕在线视频一区 | 无码人妻丰满熟妇精品区 | 成年人激情网 | 久久久精彩视频 | 一区二区三区在线观看视频 | 亚洲免费色视频 | 曰本黄色片 | 四季av国产一区二区三区 | 亚洲制服丝袜av | 久久黄色av | 欧美性生交xxxxx久久久缅北 | av无遮挡| 色噜噜色综合 | 制服丝袜一区二区三区 | 亚洲精品 欧美 | 福利所第一导航 | 波多野结衣视频免费 | 欧美激情黑人 | 免费观看成年人视频 | 日韩三级黄色 | 波多野结衣视频一区二区 | 日韩成人中文字幕 | 北条麻妃一区二区三区四区五区 | 成人免费一区 | 欧美一区二区在线看 | 欧洲成人在线 | 中文字幕电影一区 | 欧美大片在线观看 | 国产男男一区二区三区 | 亚洲国产精品久久久久爰色欲 | 成年网站在线 | а√天堂资源官网在线资源 | 国产成人综合一区二区三区 | 东北少妇av | 精品国产乱码久久久久久蜜臀 | 亚洲精品乱码久久久久久麻豆不卡 | 精品日韩一区二区三区四区 | 野花国产精品入口 | 美女被出白浆 | 91在线日韩 | 中文字幕久久久久 | 91在线看片 | 农村黄色片 | 东北高大丰满bbbbzbbb | 亚洲国产精华液网站w | 精品一区二区久久久久久按摩 | 两女双腿交缠激烈磨豆腐 | 最新日韩中文字幕 | 大尺度一区二区 | 国产精品伦一区二区三级古装电影 | 国产精品久久久一区二区 | 15p亚洲| 中文字幕一区二区三区四区 | 四虎在线免费观看 | 精品无码av在线 | 青青草这里只有精品 | 荔枝视频污 | 日本高清www免费视频 | 一区二区三区免费在线观看视频 | 美女天天干 | 亚洲777| 国产美女视频一区 | wwwsss在线观看 | 国产精品99久久久久久人 | 蜜臀久久99精品久久久 | 久久精品国产亚洲a | 国产一级黄色片子 | 国产第一精品 | 不卡日本 | 手机在线中文字幕 | 99资源网| 亚洲高清视频免费观看 | 成人黄色动漫在线观看 | 欧美va天堂| 天天干夜夜干 | 在线不卡 | 97视频在线观看免费 | 国产精品白嫩白嫩大学美女 | 国产第一页在线观看 | 国产午夜精品一区二区理论影院 | 怡红院久久 | 看了让人下面流水的视频 | 男女性杂交内射妇女bbwxz | 国产精品自拍99 | 在线免费观看一区 | 天天操妹子 | 91.xxx.高清在线| 天天干天天干天天 | 国产精品一区二区免费在线观看 | 尤物91| 日本一区二区不卡在线观看 | 日韩激情av | 午夜影院试看 | 婷婷国产一区 |