Moffat JF, Tompkins LS. A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect. Immun. 60: 296-301, 1992. PubMed: 1729191
King CH, et al. Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl. Environ. Microbiol. 54: 3023-3033, 1988. PubMed: 3223766
Daggett PM, et al. Distribution and possible interrelationships of pathogenic and nonpathogenic Acanthamoeba from aquatic environments. Microb. Ecol. 8: 371-386, 1982.
Daggett PM, et al. A molecular approach to the phylogeny of Acanthamoeba. Biosystems 18: 399-405, 1985. PubMed: 4084681
Cirillo JD, et al. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect. Immun. 62: 3254-3261, 1994. PubMed: 8039895
Steinert M, et al. Resuscitation of viable nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 63: 2047-2053, 1997. PubMed: 9143134
Cirillo JD, et al. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65: 3759-3767, 1997. PubMed: 9284149
Neumeister B, et al. Multiplication of different Legionella species in mono mac 6 cells and in Acanthamoeba castellanii. Appl. Environ. Microbiol. 63: 1219-1224, 1997. PubMed: 9097418
Helbig JH, et al. Detection of intracellular growth of Legionella pneumophila in protozoa by antigen quantification using ELISA. Zentralbl. Hyg. Umweltmed. 194: 392-397, 1993. PubMed: 8397687
Buck SL, Rosenthal RA. A quantitative method to evaluate neutralizer toxicity against Acanthamoeba castellanii. Appl. Environ. Microbiol. 62: 3521-3526, 1996. PubMed: 8795247
Grimm D, et al. Specific detection of Legionella pneumophila: construction of a new 16S rRNA-targeted oligonucleotide probe. Appl. Environ. Microbiol. 64: 2686-2690, 1998. PubMed: 9647849
Essig A, et al. Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl. Environ. Microbiol. 63: 1396-1399, 1997. PubMed: 9097437
Cirillo JD, et al. Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infect. Immun. 67: 4427-4434, 1999. PubMed: 10456883
Segal G, Shuman HA. Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect. Immun. 67: 2117-2124, 1999. PubMed: 10225863
Hales LM, Shuman HA. The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J. Bacteriol. 181: 4879-4889, 1999. PubMed: 10438758
Neumeister B, et al. Influence of Acanthamoeba castellanii on intracellular growth of different Legionella species in human monocytes. Appl. Environ. Microbiol. 66: 914-919, 2000. PubMed: 10698751
Borazjani RN, et al. Flow cytometry for determination of the efficacy of contact lens disinfecting solutions against Acanthamoeba spp. Appl. Environ. Microbiol. 66: 1057-1061, 2000. PubMed: 10698771
Miltner EC, Bermudez LE. Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials. Antimicrob. Agents Chemother. 44: 1990-1994, 2000. PubMed: 10858369
Khan NA, et al. Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba. J. Clin. Microbiol. 38: 2858-2861, 2000. PubMed: 10921939
Polesky AH, et al. Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect. Immun. 69: 977-987, 2001. PubMed: 11159993
Dietrich C, et al. Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect. Immun. 69: 2116-2122, 2001. PubMed: 11254565
Steenbergen JN, et al. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA 98: 15245-15250, 2001. PubMed: 11742090
Noble JA, et al. Phagocytosis affects biguanide sensitivity of Acanthamoeba spp. Antimicrob. Agents Chemother. 46: 2069-2076, 2002. PubMed: 12069957
Zusman T, et al. Characterization of a Legionella pneumophila relA insertion mutant and toles of RelA and RpoS in virulence gene expression. J. Bacteriol. 184: 67-75, 2002. PubMed: 11741845
Cirillo SLG, et al. Role of the Legionella pneumophila rtxA gene in amoebae. Microbiology 148: 1667-1677, 2002. PubMed: 12055287
Abd H, et al. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl. Environ. Microbiol. 69: 600-606, 2003. PubMed: 12514047
Boulanger CA, Edelstein PH. Precision and accuracy of recovery of Legionella pneumophila from seeded tap water by filtration and centrifugation. Appl. Environ. Microbiol. 61: 1805-1809, 1995. PubMed: 7646019
Khan NA, et al. Acanthamoeba can be differentiated by the polymerase chain reaction and simple plating assays. Curr. Microbiol. 43: 204-208, 2001. PubMed: 11400071
Khan NA. Pathogenicity, morphology, and differentiation of Acanthamoeba. Curr. Microbiol. 43: 391-395, 2001. PubMed: 11685503
Khan NA, Paget TA. Molecular tools for speciation and epidemiological studies of Acanthamoeba. Curr. Microbiol. 44: 444-449, 2002. PubMed: 12000996
Marolda CL, et al. Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145: 1509-1517, 1999. PubMed: 10439391
Hilbi H, et al. Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol. Microbiol. 42: 603-617, 2001. PubMed: 11722729
Hales LM, Shuman HA. Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect. Immun. 67: 3662-3666, 1999. PubMed: 10377156
Steinert M, et al. Studies on the uptake and intracellular replication of Legionella pneumophila in protozoa and in macrophage-like cells. FEMS Microbiol. Ecol. 15: 299-308, 1994.
Wintermeyer E, et al. Sequence determination and mutational analysis of the lly locus of Legionella pneumophila. Infect. Immun. 62: 1109-1117, 1994. PubMed: 8112844
Kohler R, et al. Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila. Mol. Gen. Genet. 262: 1060-1069, 2000. PubMed: 10660067
Helbig JH, et al. Immunolocalization of the Mip protein of intracellularly and extracellularly grown Legionella pneumophila. Lett. Appl. Microbiol. 32: 83-88, 2001. PubMed: 11169048
Heuner K, et al. Influence of the alternative sigma(28) factor on virulence and flagellum expression of Legionella pneumophila. Infect. Immun. 70: 1604-1608, 2002. PubMed: 11854250
Wintermeyer E, et al. Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells. Infect. Immun. 63: 4576-4583, 1995. PubMed: 7591108
Segal Gil, et al. Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol. Microbiol. 34: 799-809, 1999. PubMed: 10564519
Gal-Mor O, Segal G. The Legionella pneumophila GacA homolog (LetA) is involved in the regulation of icm virulence genes and is required for intracellular multiplication in Acanthamoeba castellanii. Microb. Pathog. 34: 187-194, 2003. PubMed: 12668142
Hagele S, et al. Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death. FEMS Microbiol. Lett. 169: 51-58, 1998. PubMed: 9851034
Steinert M, et al. Regrowth of Legionella pneumophila in a heat-disinfected plumbing system. Zentralbl. Bakteriol. 288: 331-342, 1998. PubMed: 9861677
|